Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Caroline A. Ross is active.

Publication


Featured researches published by Caroline A. Ross.


Nature Nanotechnology | 2010

Complex self-assembled patterns using sparse commensurate templates with locally varying motifs

Joel K. W. Yang; Yeon Sik Jung; Jae-Byum Chang; Rafal A. Mickiewicz; Alfredo Alexander-Katz; Caroline A. Ross; Karl K. Berggren

Templated self-assembly of block copolymer thin films can generate periodic arrays of microdomains within a sparse template, or complex patterns using 1:1 templates. However, arbitrary pattern generation directed by sparse templates remains elusive. Here, we show that an array of carefully spaced and shaped posts, prepared by electron-beam patterning of an inorganic resist, can be used to template complex patterns in a cylindrical-morphology block copolymer. We use two distinct methods: making the post spacing commensurate with the equilibrium periodicity of the polymer, which controls the orientation of the linear features, and making local changes to the shape or distribution of the posts, which direct the formation of bends, junctions and other aperiodic features in specific locations. The first of these methods permits linear patterns to be directed by a sparse template that occupies only a few percent of the area of the final self-assembled pattern, while the second method can be used to selectively and locally template complex linear patterns.


Science | 2012

Templating three-dimensional self-assembled structures in bilayer block copolymer films

Kevin W. Gotrik; Adam F. Hannon; Alfredo Alexander-Katz; Caroline A. Ross; Karl K. Berggren

To the Next Level Block copolymers will spontaneously separate into a range of microstructures that depend on the polymer block lengths and chemical compositions, and have been used as a templating material because one can selectively etch or functionalize one of the blocks. However, creating a template that is more than one layer thick is challenging. Tavakkoli K. G. et al. (p. 1294) used an array of posts to provide independent and simultaneous control of the morphology and orientation of two layers of block copolymers and were able to create local variations in the curvature and spacing of the domains. An array of posts guides the bilayer assembly of block copolymers with independent control of morphology and orientation. The registration and alignment of a monolayer of microdomains in a self-assembled block copolymer thin film can be controlled by chemical or physical templating methods. Although planar patterns are useful for nanoscale device fabrication, three-dimensional multilevel structures are required for some applications. We found that a bilayer film of a cylindrical-morphology block copolymer, templated by an array of posts functionalized with a brush attractive to the majority block, can form a rich variety of three-dimensional structures consisting of cylinder arrays with controllable angles, bends, and junctions whose geometry is controlled by the template periodicity and arrangement. This technique allows control of microdomain patterns and the ability to route and connect microdomains in specific directions.


Advanced Materials | 2011

Hierarchical Nanostructures by Sequential Self-Assembly of Styrene-Dimethylsiloxane Block Copolymers of Different Periods

Jeong Gon Son; Adam F. Hannon; Kevin W. Gotrik; Alfredo Alexander-Katz; Caroline A. Ross

Poly(styrene-block-dimethylsiloxane) (PS-b-PDMS) block copolymers with a period as low as 13 nm have been self-assembled on a template formed from PS-b-PDMS of a 34–40 nm period, which is itself templated by micron-scale substrate features prepared using conventional lithography. This hierarchical process provides a simple method for directing the self-assembly of sub-10 nm features and registering them on the substrate.


ACS Nano | 2012

Aligned Sub-10-nm Block Copolymer Patterns Templated by Post Arrays

Jae-Byum Chang; Jeong Gon Son; Adam F. Hannon; Alfredo Alexander-Katz; Caroline A. Ross; Karl K. Berggren

Self-assembly of block copolymer films can generate useful periodic nanopatterns, but the self-assembly needs to be templated to impose long-range order and to control pattern registration with other substrate features. We demonstrate here the fabrication of aligned sub-10-nm line width patterns with a controlled orientation by using lithographically formed post arrays as templates for a 16 kg/mol poly(styrene-block-dimethylsiloxane) (PS-b-PDMS) diblock copolymer. The in-plane orientation of the block copolymer cylinders was controlled by varying the spacing and geometry of the posts, and the results were modeled using 3D self-consistent field theory. This work illustrates how arrays of narrow lines with specific in-plane orientation can be produced, and how the post height and diameter affect the self-assembly.


Applied Physics Letters | 2012

Deposition of epitaxial BiFeO3/CoFe2O4 nanocomposites on (001) SrTiO3 by combinatorial pulsed laser deposition

Nicolas M. Aimon; Dong Hun Kim; Hong Kyoon Choi; Caroline A. Ross

BiFeO3/CoFe2O4 (BFO/CFO) nanocomposites were grown on SrTiO3 by pulsed laser deposition using a combinatorial method in which Bi1.2FeO3 and CoFe2O4 targets are alternately ablated. The films had the same vertically nanostructured morphology as thin films prepared by ablation of a single target, consisting of epitaxial CoFe2O4 pillars in a BiFeO3 matrix. In a series of samples synthesized with a compositional spread, the out-of-plane magnetic anisotropy and the out-of-plane compressive strain of the CoFe2O4 pillars increased with decreasing volume fraction, and the anisotropy agreed with the value predicted from the strain state and magnetoelastic coefficients of CoFe2O4. These results show the dominant effect of magnetoelastic anisotropy in determining the magnetic hysteresis of the nanocomposite.


Nano Letters | 2014

Proximity Induced High-Temperature Magnetic Order in Topological Insulator - Ferrimagnetic Insulator Heterostructure

Murong Lang; Mohammad Montazeri; Mehmet C. Onbasli; Xufeng Kou; Yabin Fan; Pramey Upadhyaya; Kaiyuan Yao; Frank Liu; Ying Jiang; Wanjun Jiang; Kin L. Wong; Guoqiang Yu; Jianshi Tang; Tianxiao Nie; Liang He; Robert N. Schwartz; Yong Wang; Caroline A. Ross; Kang L. Wang

Introducing magnetic order in a topological insulator (TI) breaks time-reversal symmetry of the surface states and can thus yield a variety of interesting physics and promises for novel spintronic devices. To date, however, magnetic effects in TIs have been demonstrated only at temperatures far below those needed for practical applications. In this work, we study the magnetic properties of Bi2Se3 surface states (SS) in the proximity of a high Tc ferrimagnetic insulator (FMI), yttrium iron garnet (YIG or Y3Fe5O12). Proximity-induced butterfly and square-shaped magnetoresistance loops are observed by magneto-transport measurements with out-of-plane and in-plane fields, respectively, and can be correlated with the magnetization of the YIG substrate. More importantly, a magnetic signal from the Bi2Se3 up to 130 K is clearly observed by magneto-optical Kerr effect measurements. Our results demonstrate the proximity-induced TI magnetism at higher temperatures, an important step toward room-temperature application of TI-based spintronic devices.


Nature Communications | 2014

Design rules for self-assembled block copolymer patterns using tiled templates

Jae-Byum Chang; Hong Kyoon Choi; Adam F. Hannon; Alfredo Alexander-Katz; Caroline A. Ross; Karl K. Berggren

Directed self-assembly of block copolymers has been used for fabricating various nanoscale patterns, ranging from periodic lines to simple bends. However, assemblies of dense bends, junctions and line segments in a single pattern have not been achieved by using sparse templates, because no systematic template design methods for achieving such complex patterns existed. To direct a complex pattern by using a sparse template, the template needs to encode the key information contained in the final pattern, without being a simple copy of the pattern. Here we develop a set of topographic template tiles consisting of square lattices of posts with a restricted range of geometric features. The block copolymer patterns resulting from all tile arrangements are determined. By combining tiles in different ways, it is possible to predict a relatively simple template that will direct the formation of non-trivial block copolymer patterns, providing a new template design method for a complex block copolymer pattern.


Physical Review Letters | 2015

Length Scale of the Spin Seebeck Effect

Andreas Kehlberger; Ulrike Ritzmann; Denise Hinzke; Er-Jia Guo; Joel Cramer; G. Jakob; Mehmet C. Onbasli; Dong Hun Kim; Caroline A. Ross; Matthias B. Jungfleisch; B. Hillebrands; Ulrich Nowak; Mathias Kläui

The observation of the spin Seebeck effect in insulators has meant a breakthrough for spin caloritronics due to the unique ability to generate pure spin currents by thermal excitations in insulating systems without moving charge carriers. Since the recent first observation, the underlying mechanism and the origin of the observed signals have been discussed highly controversially. Here we present a characteristic dependence of the longitudinal spin Seebeck effect amplitude on the thickness of the insulating ferromagnet (YIG). Our measurements show that the observed behavior cannot be explained by any effects originating from the interface, such as magnetic proximity effects in the spin detector (Pt). Comparison to theoretical calculations of thermal magnonic spin currents yields qualitative agreement for the thickness dependence resulting from the finite effective magnon propagation length so that the origin of the effect can be traced to genuine bulk magnonic spin currents ruling out parasitic interface effects.


Optics Express | 2012

Magneto-optical properties of cerium substituted yttrium iron garnet films with reduced thermal budget for monolithic photonic integrated circuits

Taichi Goto; Mehmet C. Onbasli; Caroline A. Ross

Thin films of polycrystalline cerium substituted yttrium iron garnet (CeYIG) were grown on an yttrium iron garnet (YIG) seed layer on Si and Si-on-insulator substrates by pulsed laser deposition, and their optical and magneto-optical properties in the near-IR region were measured. A YIG seed layer of ~30 nm thick processed by rapid thermal anneal at 800°C provided a virtual substrate to promote crystallization of the CeYIG. The effect of the thermal budget of the YIG/CeYIG growth process on the film structure, magnetic and magnetooptical properties was determined.


Nano Letters | 2014

Optimizing Topographical Templates for Directed Self-Assembly of Block Copolymers via Inverse Design Simulations

Adam F. Hannon; Yi Ding; Wubin Bai; Caroline A. Ross; Alfredo Alexander-Katz

An inverse design algorithm has been developed that predicts the necessary topographical template needed to direct the self-assembly of a diblock copolymer to produce a given complex target structure. The approach is optimized by varying the number of topographical posts, post size, and block copolymer volume fraction to yield a template solution that generates the target structure in a reproducible manner. The inverse algorithm is implemented computationally to predict post arrangements that will template two different target structures and the predicted templates are tested experimentally with a polydimethylsiloxane-b-polystyrene block copolymer. Simulated and experimental results show overall very good agreement despite the complexity of the patterns. The templates determined from the model can be used in developing simpler design rules for block copolymer directed self-assembly.

Collaboration


Dive into the Caroline A. Ross's collaboration.

Top Co-Authors

Avatar

Dong Hun Kim

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Mehmet C. Onbasli

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Alfredo Alexander-Katz

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Adam F. Hannon

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Lei Bi

University of Electronic Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Wubin Bai

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Gerald F. Dionne

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Kevin W. Gotrik

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Karl K. Berggren

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Nicolas M. Aimon

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge