Caroline Demangel
Pasteur Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Caroline Demangel.
Journal of Immunology | 2002
Daniel R. Roach; Andrew G. D. Bean; Caroline Demangel; Helen Briscoe; Warwick J. Britton
Host immunity to mycobacterial infection is dependent on the activation of T lymphocytes and their recruitment with monocytes to form granulomas. These discrete foci of activated macrophages and lymphocytes provide a microenvironment for containing the infection. The cytokine, TNF, is essential for the formation and maintenance of granulomas, but the mechanisms by which TNF regulates these processes are unclear. We have compared the responses of TNF-deficient (TNF−/−) and wild-type C57BL/6 mice to infection with Mycobacterium smegmatis, a potent inducer of TNF, and virulent Mycobacterium tuberculosis to delineate the TNF-dependent and -independent components of the process. The initial clearance of M. smegmatis was TNF independent, but TNF was required for the early expression of mRNA encoding C-C and C-X-C chemokines and the initial recruitment of CD11b+ macrophages and CD4+ T cells to the liver during the second week of infection. Late chemokine expression and cell recruitment developed in TNF−/− mice associated with enhanced Th1-like T cell responses and mycobacterial clearance, but recruited leukocytes did not form tight granulomas. Infection of TNF−/− mice with M. tuberculosis also resulted in an initial delay in chemokine induction and cellular recruitment to the liver. Subsequently, increased mRNA expression was evident in TNF−/− mice, but the loosely associated lymphocytes and macrophages failed to form granulomas and prevent progressive infection. Therefore, TNF orchestrates early induction of chemokines and initial leukocyte recruitment, but has an additional role in the aggregation of leukocytes into functional granulomas capable of controlling virulent mycobacterial infection.
Nature Medicine | 2003
Alexander S. Pym; Priscille Brodin; Laleh Majlessi; Roland Brosch; Caroline Demangel; Ann Williams; Karen E. Griffiths; Gilles Marchal; Claude Leclerc; Stewart T. Cole
The live tuberculosis vaccines Mycobacterium bovis BCG (bacille Calmette-Guérin) and Mycobacterium microti both lack the potent, secreted T-cell antigens ESAT-6 (6-kDa early secretory antigenic target) and CFP-10 (10-kDa culture filtrate protein). This is a result of independent deletions in the region of deletion-1 (RD1) locus, which is intact in virulent members of the Mycobacterium tuberculosis complex. To increase their immunogenicity and protective capacity, we complemented both vaccines with different constructs containing the esxA and esxB genes, which encode ESAT-6 and CFP-10 respectively, as well as a variable number of flanking genes. Only reintroduction of the complete locus, comprising at least 11 genes, led to full secretion of the antigens and resulted in specific ESAT-6–dependent immune responses; this suggests that the flanking genes encode a secretory apparatus. Mice and guinea pigs vaccinated with the recombinant strain BCG::RD1-2F9 were better protected against challenge with M. tuberculosis, showing less severe pathology and reduced dissemination of the pathogen, as compared with control animals immunized with BCG alone.
The EMBO Journal | 2000
Roselyne Binétruy-Tournaire; Caroline Demangel; Bernard Malavaud; Roger Vassy; Sylvie Rouyre; Michel Kraemer; Jean Plouët; Claude Derbin; Gérard Y Perret; Jean Claude Mazie
Vascular endothelial growth factor (VEGF) binding to the kinase domain receptor (KDR/FLK1 or VEGFR‐2) mediates vascularization and tumor‐induced angiogenesis. Since there is evidence that KDR plays an important role in tumor angiogenesis, we sought to identify peptides able to block the VEGF–KDR interaction. A phage epitope library was screened by affinity for membrane‐expressed KDR or for an anti‐VEGF neutralizing monoclonal antibody. Both strategies led to the isolation of peptides binding KDR specifically, but those isolated by KDR binding tended to display lower reactivities. Of the synthetic peptides corresponding to selected clones tested to determine their inhibitory activity, ATWLPPR completely abolished VEGF binding to cell‐displayed KDR. In vitro, this effect led to the inhibition of the VEGF‐mediated proliferation of human vascular endothelial cells, in a dose‐dependent and endothelial cell type‐specific manner. Moreover, in vivo, ATWLPPR totally abolished VEGF‐induced angiogenesis in a rabbit corneal model. Taken together, these data demonstrate that ATWLPPR is an effective antagonist of VEGF binding, and suggest that this peptide may be a potent inhibitor of tumor angiogenesis and metastasis.
Infection and Immunity | 2006
Priscille Brodin; Laleh Majlessi; Laurent Marsollier; Marien I. de Jonge; Daria Bottai; Caroline Demangel; Jason Hinds; Olivier Neyrolles; Philip D. Butcher; Claude Leclerc; Stewart T. Cole; Roland Brosch
ABSTRACT The dedicated secretion system ESX-1 of Mycobacterium tuberculosis encoded by the extended RD1 region (extRD1) assures export of the ESAT-6 protein and its partner, the 10-kDa culture filtrate protein CFP-10, and is missing from the vaccine strains M. bovis BCG and M. microti. Here, we systematically investigated the involvement of each individual ESX-1 gene in the secretion of both antigens, specific immunogenicity, and virulence. ESX-1-complemented BCG and M. microti strains were more efficiently engulfed by bone-marrow-derived macrophages than controls, and this may account for the enhanced in vivo growth of ESX-1-carrying strains. Inactivation of gene pe35 (Rv3872) impaired expression of CFP-10 and ESAT-6, suggesting a role in regulation. Genes Rv3868, Rv3869, Rv3870, Rv3871, and Rv3877 encoding an ATP-dependent chaperone and translocon were essential for secretion of ESAT-6 and CFP-10 in contrast to ppe68 Rv3873 and Rv3876, whose inactivation did not impair secretion of ESAT-6. A strict correlation was found between ESAT-6 export and the generation of ESAT-6 specific T-cell responses in mice. Furthermore, ESAT-6 secretion and specific immunogenicity were almost always correlated with enhanced virulence in the SCID mouse model. Only loss of Rv3865 and part of Rv3866 did not affect ESAT-6 secretion or immunogenicity but led to attenuation. This suggests that Rv3865/66 represent a new virulence factor that is independent from ESAT-6 secretion. The present study has allowed us to identify new aspects of the extRD1 region of M. tuberculosis and to explore its role in the pathogenesis of tuberculosis.
Cancer Research | 2004
Christina L. van Broekhoven; Christopher R. Parish; Caroline Demangel; Warwick J. Britton; Joseph G. Altin
Dendritic cells (DCs) are potent stimulators of immunity, and DCs pulsed with tumor antigen ex vivo have applications in tumor immunotherapy. However, DCs are a small population of cells, and their isolation and pulsing with antigen can be impractical. Here we show that a crude preparation of plasma membrane vesicles (PMV) from the highly metastatic murine melanoma (B16-OVA) and a surrogate tumor antigen (OVA) can be targeted directly to DCs in vivo to elicit functional effects. A novel metal-chelating lipid, 3(nitrilotriacetic acid)-ditetradecylamine, was incorporated into B16-OVA-derived PMV, allowing recombinant hexahistidine-tagged forms of single chain antibody fragments to the DC surface molecules CD11c and DEC-205, to be conveniently “engrafted” onto the vesicle surface by metal-chelating linkage. The modified PMV, or similarly engrafted synthetic stealth liposomes containing OVA or OVA peptide antigen, were found to target DCs in vitro and in vivo, in experiments using flow cytometry and fluorescence confocal microscopy. When used as vaccines in syngeneic mice, the preparations stimulated strong B16-OVA-specific CTL responses in splenic T cells and a marked protection against tumor growth. Protection was dependent on the simultaneous delivery of both antigen and a DC maturation or “danger signal” signal (IFN-γ or lipopolysaccharide). Administration of the DC-targeting vaccine to mice challenged with B16-OVA cells induced a dramatic immunotherapeutic effect and prolonged disease-free survival. The results show that the targeting of antigen to DCs in this way is highly effective at inducing immunity and protection against the tumor, with protection being at least partially dependent on the eosinophil chemokine eotaxin.
Cellular Microbiology | 2012
Diane Houben; Caroline Demangel; Jakko van Ingen; Jorge Perez; Lucy Baldeón; Abdallah M. Abdallah; Laxmee Caleechurn; Daria Bottai; Maaike van Zon; Karin de Punder; Tridia van der Laan; Arie Kant; Ruth Bossers-de Vries; Peter Willemsen; Wilbert Bitter; Dick van Soolingen; Roland Brosch; Nicole N. van der Wel; Peter J. Peters
Mycobacterium species, including Mycobacterium tuberculosis and Mycobacterium leprae, are among the most potent human bacterial pathogens. The discovery of cytosolic mycobacteria challenged the paradigm that these pathogens exclusively localize within the phagosome of host cells. As yet the biological relevance of mycobacterial translocation to the cytosol remained unclear. In this current study we used electron microscopy techniques to establish a clear link between translocation and mycobacterial virulence. Pathogenic, patient‐derived mycobacteria species were found to translocate to the cytosol, while non‐pathogenic species did not. We were further able to link cytosolic translocation with pathogenicity by introducing the ESX‐1 (type VII) secretion system into the non‐virulent, exclusively phagolysosomal Mycobacterium bovis BCG. Furthermore, we show that translocation is dependent on the C‐terminus of the early‐secreted antigen ESAT‐6. The C‐terminal truncation of ESAT‐6 was shown to result in attenuation in mice, again linking translocation to virulence. Together, these data demonstrate the molecular mechanism facilitating translocation of mycobacteria. The ability to translocate from the phagolysosome to the cytosol is with this study proven to be biologically significant as it determines mycobacterial virulence.
European Journal of Immunology | 2002
Caroline Demangel; Patrick Bertolino; Warwick J. Britton
The production of IL‐12 by dendritic cells (DC) early in an immune response is considered critical for the polarization of CD4+ T lymphocyte response towards a Th1 pattern, a key process in the clearance of intracellular pathogens. Infection of bone marrow‐derived DC with Mycobacterium bovis Bacillus Calmette Guérin (BCG) induced a concurrent and dose‐dependent releaseof IL‐10 and IL‐12. Here we examined whether the production of IL‐10 by DC affected their IL‐12 response to mycobacterial infection and the generation of protective immune responses in vivo. Compared to wild‐type (WT) DC, DC deficient for IL‐10 synthesis (IL‐10–/–) showed increased IL‐12 production in response to BCG infection and CD40 stimuli in vitro. Moreover, when transferred into mice, infected IL‐10–/– DC were more efficient than WT DC at inducing IFN‐γ production to mycobacterial antigens in the draining lymph nodes (DLN).This effect was associated with increased trafficking of IL‐10–/– DC to the DLN and enhanced IL‐12 production by DC within the DLN. These data show that autocrine IL‐10 exerts a dual inhibitory effect on the induction of primary immune responses by DC: first, by down‐regulating the migration of infected DC to the DLN and second, by modulating the IL‐12 production by DC in the DLN.
European Journal of Immunology | 1999
Caroline Demangel; Andrew G.D. Bean; Ela Martin; Carl G. Feng; Arun T. Kamath; Warwick J. Britton
In the lung, dendritic cells (DC) are key antigen‐presenting cells capable of triggering specific cellular responses to inhaled pathogens, and thus, they may be important in the initiation of an early response to mycobacterial infections. The ability of DC to enhance antigen presentation to naive T cells within the lungs was characterized with respect to Mycobacterium bovis Bacillus Calmette Guérin (BCG) vaccination against M. tuberculosis infection. In vitro derived DC were infected with BCG, which induced their maturation, as shown by the increased expression of MHC class II antigens, CD80 and CD86 co‐stimulatory molecules. The synthesis of mRNA for IL‐1, IL‐6, IL‐12, IL‐10 and IL‐1 receptor antagonist was also enhanced. When administered intratracheally in mice, infected DC induced a potent T cell response and the production of IFN‐γ to mycobacterial antigens in the mediastinal lymphnodes, leading to a significant protection against aerosol M. tuberculosis infection. Intriguingly, although the vaccination schedule for BCG‐infected DC was much shorter than subcutaneous BCG vaccination (7 days as compared to 100 days), both types of vaccination showed similar levels of protection. These data confirm that DC can be potent inducers of a cellular immune response against mycobacteria and support the concept of combining DC strategies with mycobacterial vaccines for protective immunity against tuberculosis.
Cell Host & Microbe | 2010
Serge Mostowy; Matteo Bonazzi; Mélanie A. Hamon; To Nam Tham; Adeline Mallet; Mickaël Lelek; Edith Gouin; Caroline Demangel; Roland Brosch; Christophe Zimmer; Anna Sartori; Makoto Kinoshita; Marc Lecuit; Pascale Cossart
Actin-based motility is used by various pathogens for dissemination within and between cells. Yet host factors restricting this process have not been identified. Septins are GTP-binding proteins that assemble as filaments and are essential for cell division. However, their role during interphase has remained elusive. Here, we report that septin assemblies are recruited to different bacteria that polymerize actin. We observed that intracytosolic Shigella either become compartmentalized in septin cage-like structures or form actin tails. Inactivation of septin caging increases the number of Shigella with actin tails and enhances cell-to-cell spread. TNF-α, a host cytokine produced upon Shigella infection, stimulates septin caging and restricts actin tail formation and cell-to-cell spread. Finally, we show that septin cages entrap bacteria targeted to autophagy. Together, these results reveal an unsuspected mechanism of host defense that restricts dissemination of invasive pathogens.
Nature Reviews Microbiology | 2009
Caroline Demangel; Timothy P. Stinear; Stewart T. Cole
Buruli ulcer is an emerging human disease caused by infection with a slow-growing pathogen, Mycobacterium ulcerans, that produces mycolactone, a cytotoxin with immunomodulatory properties. The disease is associated with wetlands in certain tropical countries, and evidence for a role of insects in transmission of this pathogen is growing. Comparative genomic analysis has revealed that M. ulcerans arose from Mycobacterium marinum, a ubiquitous fast-growing aquatic species, by horizontal transfer of a virulence plasmid that carries a cluster of genes for mycolactone production, followed by reductive evolution. Here, the ecology, microbiology, evolutionary genomics and immunopathology of Buruli ulcer are reviewed.