Caroline Denesvre
Institut national de la recherche agronomique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Caroline Denesvre.
Journal of Virology | 2002
Stephanie Mercier; Hanne Gahery-Segard; Martine Monteil; Renée Lengagne; Jean-Gérard Guillet; Marc Eloit; Caroline Denesvre
ABSTRACT Adenovirus-mediated gene delivery via the intramuscular route efficiently promotes an immune response against the transgene product. In this study, a recombinant adenovirus vector encoding β-galactosidase (AdβGal) was used to transduce dendritic cells (DC), which are antigen-presenting cells, as well as myoblasts and endothelial cells (EC), neither of which present antigens. C57BL/6 mice received a single intramuscular injection of AdβGal-transduced DC, EC, or myoblasts and were then monitored for anti-β-galactosidase (anti-β-Gal) antibody production, induction of gamma interferon-secreting CD8+ T cells, and protection against melanoma tumor cells expressing β-Gal. While all transduced cell types were able to elicit an antibody response against the transgene product, the specific isotypes were distinct, with exclusive production of immunoglobulin G2a (IgG2a) antibodies following injection of transduced DC and EC versus equivalent IgG1 and IgG2a responses in mice inoculated with transduced myoblasts. Transduced DC induced a strong ex vivo CD8+ T-cell response at a level of 50% of the specific response obtained with the AdβGal control. In contrast, this response was 6- to 10-fold-lower in animals injected with transduced myoblasts and EC. Accordingly, only animals injected with transduced DC were protected against a β-Gal tumor challenge. Thus, in order to induce a strong and protective immune response to an adenovirus-encoded transgene product, it is necessary to transduce cells of dendritic lineage. Importantly, it will be advantageous to block the transduction of DC for adenovirus-based gene therapy strategies.
Journal of Virology | 2007
Caroline Denesvre; Caroline Blondeau; Monique Lemesle; Y. Le Vern; D. Vautherot; Philippe Roingeard; Jean-François Vautherot
ABSTRACT Mareks disease virus (MDV) is an alphaherpesvirus for which infection is strictly cell associated in permissive cell culture systems. In contrast to most other alphaherpesviruses, no comprehensive ultrastructural study has been published to date describing the different stages of MDV morphogenesis. To circumvent problems linked to nonsynchronized infection and low infectivity titers, we generated a recombinant MDV expressing an enhanced green fluorescent protein fused to VP22, a major tegument protein that is not implicated in virion morphogenesis. Growth of this recombinant virus in cell culture was decreased threefold compared to that of the parental Bac20 virus, but this mutant was still highly replicative. The recombinant virus allowed us to select infected cells by cell-sorting cytometry at late stages of infection for subsequent transmission electron microscopy analysis. Under these conditions, all of the stages of assembly and virion morphogenesis could be observed except extracellular enveloped virions, even at the cell surface. We observed 10-fold fewer naked cytoplasmic capsids than nuclear capsids, and intracellular enveloped virions were very rare. The partial envelopment of capsids in the cytoplasm supports the hypothesis of the acquisition of the final envelope in this cellular compartment. We demonstrate for the first time that, compared to other alphaherpesviruses, MDV seems deficient in three crucial steps of viral morphogenesis, i.e., release from the nucleus, secondary envelopment, and the exocytosis process. The discrepancy between the efficiency with which this MDV mutant spreads in cell culture and the relatively inefficient process of its envelopment and virion release raises the question of the MDV cell-to-cell spreading mechanism.
Veterinary Research | 2014
Mathilde Couteaudier; Caroline Denesvre
Marek’s disease virus (MDV) is a highly contagious herpesvirus which induces T-cell lymphoma in the chicken. This virus is still spreading in flocks despite forty years of vaccination, with important economical losses worldwide. The feather follicles, which anchor feathers into the skin and allow their morphogenesis, are considered as the unique source of MDV excretion, causing environmental contamination and disease transmission. Epithelial cells from the feather follicles are the only known cells in which high levels of infectious mature virions have been observed by transmission electron microscopy and from which cell-free infectious virions have been purified. Finally, feathers harvested on animals and dust are today considered excellent materials to monitor vaccination, spread of pathogenic viruses, and environmental contamination. This article reviews the current knowledge on MDV-skin interactions and discusses new approaches that could solve important issues in the future.
Veterinary Research | 2013
Sylvie Rémy; Caroline Blondeau; Yves Le Vern; Monique Lemesle; Jean-François Vautherot; Caroline Denesvre
Marek’s disease virus (MDV) is an alpha-herpesvirus causing Marek’s disease in chickens, mostly associated with T-cell lymphoma. VP22 is a tegument protein abundantly expressed in cells during the lytic cycle, which is essential for MDV spread in culture. Our aim was to generate a pathogenic MDV expressing a green fluorescent protein (EGFP) fused to the N-terminus of VP22 to better decipher the role of VP22 in vivo and monitor MDV morphogenesis in tumors cells. In culture, rRB-1B EGFP22 led to 1.6-fold smaller plaques than the parental virus. In chickens, the rRB-1B EGFP22 virus was impaired in its ability to induce lymphoma and to spread in contact birds. The MDV genome copy number in blood and feathers during the time course of infection indicated that rRB-1B EGFP22 reached its two major target cells, but had a growth defect in these two tissues. Therefore, the integrity of VP22 is critical for an efficient replication in vivo, for tumor formation and horizontal transmission. An examination of EGFP fluorescence in rRB-1B EGFP22-induced tumors showed that about 0.1% of the cells were in lytic phase. EGFP-positive tumor cells were selected by cytometry and analyzed for MDV morphogenesis by transmission electron microscopy. Only few particles were present per cell, and all types of virions (except mature enveloped virions) were detected unequivocally inside tumor lymphoid cells. These results indicate that MDV morphogenesis in tumor cells is more similar to the morphorgenesis in fibroblastic cells in culture, albeit poorly efficient, than in feather follicle epithelial cells.
Viral Immunology | 2000
Saw See Hong; Martine Bardy; Martine Monteil; Caroline Denesvre; Jeannette Tournier; Gilles Martin; Marc Eloit; Pierre Boulanger
A panel of nine independent mouse monoclonal antibodies (MAbs) against penton base capsomers of subgenus C adenovirus serotypes 2 (Ad2) and 5 (Ad5) were isolated and characterized. Two of them (1D2 and 5A5), raised against Ad5 virion as the immunogen, bound to sodium dodecyl sulfate (SDS)-resistant and subgenus C-specific epitopes that were not present in subgenus B Ad3 penton base. The 1D2 and 5A5 epitopes were mapped to two distinct regions that did not belong to the main variable region carrying the integrin-binding RGD motif at position 340. For the other seven MAbs, raised against recombinant Ad2 penton base protein (9S-pentamers), the epitopes were sensitive to SDS-denaturation, but reacted with native Ad2, Ad5, and Ad3 penton base. The epitopes recognized by the nine MAbs and by polyclonal antipenton base antibodies defined three major immunoreactive regions. One (I) mapped to the N-terminal domain (residues 116-165); the other two regions were almost symmetrically disposed on both sides of the integrin-binding RGD motif at position 340, within residues 248-270 (II), and within residues 368-427 (III) in the C-terminal domain. Region II overlapped the fiber-binding site in penton base (residues 254-260). None of the MAbs showed any detectable virus neutralization effect, but they all slightly augmented the efficiency of Ad-mediated gene transfer. Although none of their epitopes included the RGD-340 tripeptide, substitutions of the arginine residue in the RGD motif abolished the reactivity of six individual and distant epitopes, suggesting a major conformational role for the RGD-containing domain.
PLOS ONE | 2014
Laëtitia Trapp-Fragnet; Djihad Bencherit; Danièle Chabanne-Vautherot; Yves Le Vern; Sylvie Rémy; Elisa Boutet-Robinet; Gladys Mirey; Jean-François Vautherot; Caroline Denesvre
Marek’s disease is one of the most common viral diseases of poultry affecting chicken flocks worldwide. The disease is caused by an alphaherpesvirus, the Marek’s disease virus (MDV), and is characterized by the rapid onset of multifocal aggressive T-cell lymphoma in the chicken host. Although several viral oncogenes have been identified, the detailed mechanisms underlying MDV-induced lymphomagenesis are still poorly understood. Many viruses modulate cell cycle progression to enhance their replication and persistence in the host cell, in the case of some oncogenic viruses ultimately leading to cellular transformation and oncogenesis. In the present study, we found that MDV, like other viruses, is able to subvert the cell cycle progression by triggering the proliferation of low proliferating chicken cells and a subsequent delay of the cell cycle progression into S-phase. We further identified the tegument protein VP22 (pUL49) as a major MDV-encoded cell cycle regulator, as its vector-driven overexpression in cells lead to a dramatic cell cycle arrest in S-phase. This striking functional feature of VP22 appears to depend on its ability to associate with histones in the nucleus. Finally, we established that VP22 expression triggers the induction of massive and severe DNA damages in cells, which might cause the observed intra S-phase arrest. Taken together, our results provide the first evidence for a hitherto unknown function of the VP22 tegument protein in herpesviral reprogramming of the cell cycle of the host cell and its potential implication in the generation of DNA damages.
PLOS ONE | 2012
Nicolas Richerioux; Caroline Blondeau; Agnès Wiedemann; Sylvie Rémy; Jean-François Vautherot; Caroline Denesvre
Mareks Disease Virus (MDV) is an avian alpha-herpesvirus that only spreads from cell-to-cell in cell culture. While its cell-to-cell spread has been shown to be dependent on actin filament dynamics, the mechanisms regulating this spread remain largely unknown. Using a recombinant BAC20 virus expressing an EGFPVP22 tegument protein, we found that the actin cytoskeleton arrangements and cell-cell contacts differ in the center and periphery of MDV infection plaques, with cells in the latter areas showing stress fibers and rare cellular projections. Using specific inhibitors and activators, we determined that Rho-ROCK pathway, known to regulate stress fiber formation, and Rac-PAK, known to promote lamellipodia formation and destabilize stress fibers, had strong contrasting effects on MDV cell-to-cell spread in primary chicken embryo skin cells (CESCs). Inhibition of Rho and its ROCKs effectors led to reduced plaque sizes whereas inhibition of Rac or its group I-PAKs effectors had the adverse effect. Importantly, we observed that the shape of MDV plaques is related to the semi-ordered arrangement of the elongated cells, at the monolayer level in the vicinity of the plaques. Inhibition of Rho-ROCK signaling also resulted in a perturbation of the cell arrangement and a rounding of plaques. These opposing effects of Rho and Rac pathways in MDV cell-to-cell spread were validated for two parental MDV recombinant viruses with different ex vivo spread efficiencies. Finally, we demonstrated that Rho/Rac pathways have opposing effects on the accumulation of N-cadherin at cell-cell contact regions between CESCs, and defined these contacts as adherens junctions. Considering the importance of adherens junctions in HSV-1 cell-to-cell spread in some cell types, this result makes of adherens junctions maintenance one potential and attractive hypothesis to explain the Rho/Rac effects on MDV cell-to-cell spread. Our study provides the first evidence that MDV cell-to-cell spread is regulated by Rho/Rac signaling.
Stem Cell Research | 2015
Mathilde Couteaudier; Laëtitia Trapp-Fragnet; Nicolas Auger; Katia Courvoisier; Bertrand Pain; Caroline Denesvre; Jean-François Vautherot
A common challenge in avian cell biology is the generation of differentiated cell-lines, especially in the keratinocyte lineage. Only a few avian cell-lines are available and very few of them show an interesting differentiation profile. During the last decade, mammalian embryonic stem cell-lines were shown to differentiate into almost all lineages, including keratinocytes. Although chicken embryonic stem cells had been obtained in the 1990s, few differentiation studies toward the ectodermal lineage were reported. Consequently, we explored the differentiation of chicken embryonic stem cells toward the keratinocyte lineage by using a combination of stromal induction, ascorbic acid, BMP4 and chicken serum. During the induction period, we observed a downregulation of pluripotency markers and an upregulation of epidermal markers. Three homogenous cell populations were derived, which were morphologically similar to chicken primary keratinocytes, displaying intracellular lipid droplets in almost every pavimentous cell. These cells could be serially passaged without alteration of their morphology and showed gene and protein expression profiles of epidermal markers similar to chicken primary keratinocytes. These cells represent an alternative to the isolation of chicken primary keratinocytes, being less cumbersome to handle and reducing the number of experimental animals used for the preparation of primary cells.
Veterinary Research | 2009
Najat Chbab; Danièle Chabanne-Vautherot; Annick Francineau; Nikolaus Osterrieder; Caroline Denesvre; Jean-François Vautherot
Marek’s disease virus type 1 (MDV-1) shows a strict dependency on the direct cell-to-cell spread for its propagation in cell culture. As MDV-1 shows an impaired nuclear egress in cell culture, we wished to address the characterization of capsid/tegument genes which may intervene in the maturation of intranuclear capsids. Orthologs of UL17 are present in all herpesviruses and, in all reported case, were shown to be essential for viral growth, playing a role in capsid maturation and DNA packaging. As only HSV-1 and PrV UL17 proteins have been characterized so far, we wished to examine the role of MDV-1 pUL17 in virus replication. To analyze MDV-1 UL17 gene function, we created deletion mutants or point mutated the open reading frame (ORF) to interrupt its coding phase. We established that a functional ORF UL17 is indispensable for MDV-1 growth. We chose to characterize the virally encoded protein by tagging the 729 amino-acid long protein with a repeat of the HA peptide that was fused to its C-terminus. Protein pUL17 was identified in infected cell extracts as an 82 kDa protein which localized to the nucleus, colocalizing with VP5, the major capsid protein, and VP13/14, a major tegument protein. By using green fluorescent protein fusion and HA tagged proteins expressed under the cytomegalovirus IE gene enhancer/promoter (PCMV IE), we showed that MDV-1 pUL17 nuclear distribution in infected cells is not an intrinsic property. Although our results strongly suggest that another viral protein retains (or relocate) pUL17 to the nucleus, we report that none of the tegument protein tested so far were able to mediate pUL17 relocation to the nucleus.
Journal of Virology | 2008
Caroline Blondeau; Daniel Marc; Katia Courvoisier; Jean-François Vautherot; Caroline Denesvre
ABSTRACT VP22, encoded by the UL49 gene of Mareks disease virus (MDV), is indispensable for virus cell-to-cell spreading. We show herein that MDV UL49 can be functionally replaced with avian and human viral orthologs. Replacement of MDV VP22 with that of avian gallid herpesvirus 3 or herpesvirus of turkey, whose residue identity with MDV is close to 60%, resulted in 73 and 131% changes in viral spreading, respectively. In contrast, VP22 replacement with human herpes simplex virus type 1 resulted in 14% plaque formation. Therefore, heterologous avian and human VP22 proteins share sufficient structural homology to support MDV cell-to-cell spreading, albeit with different efficiencies.