Caroline Jose
University of Bordeaux
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Caroline Jose.
Biochimica et Biophysica Acta | 2011
Caroline Jose; Nadège Bellance; Rodrigue Rossignol
A considerable amount of knowledge has been produced during the last five years on the bioenergetics of cancer cells, leading to a better understanding of the regulation of energy metabolism during oncogenesis, or in adverse conditions of energy substrate intermittent deprivation. The general enhancement of the glycolytic machinery in various cancer cell lines is well described and recent analyses give a better view of the changes in mitochondrial oxidative phosphorylation during oncogenesis. While some studies demonstrate a reduction of oxidative phosphorylation (OXPHOS) capacity in different types of cancer cells, other investigations revealed contradictory modifications with the upregulation of OXPHOS components and a larger dependency of cancer cells on oxidative energy substrates for anabolism and energy production. This apparent conflictual picture is explained by differences in tumor size, hypoxia, and the sequence of oncogenes activated. The role of p53, C-MYC, Oct and RAS on the control of mitochondrial respiration and glutamine utilization has been explained recently on artificial models of tumorigenesis. Likewise, the generation of induced pluripotent stem cells from oncogene activation also showed the role of C-MYC and Oct in the regulation of mitochondrial biogenesis and ROS generation. In this review article we put emphasis on the description of various bioenergetic types of tumors, from exclusively glycolytic to mainly OXPHOS, and the modulation of both the metabolic apparatus and the modalities of energy substrate utilization according to tumor stage, serial oncogene activation and associated or not fluctuating microenvironmental substrate conditions. We conclude on the importance of a dynamic view of tumor bioenergetics.
Cell Metabolism | 2013
Su Melser; Etienne Hébert Chatelain; Julie Lavie; Walid Mahfouf; Caroline Jose; Emilie Obre; Susan Goorden; Muriel Priault; Ype Elgersma; Hamid Reza Rezvani; Rodrigue Rossignol; Giovanni Benard
Mitophagy has been recently described as a mechanism of elimination of damaged organelles. Although the regulation of the amount of mitochondria is a core issue concerning cellular energy homeostasis, the relationship between mitochondrial degradation and energetic activity has not yet been considered. Here, we report that the stimulation of mitochondrial oxidative phosphorylation enhances mitochondrial renewal by increasing its degradation rate. Upon high oxidative phosphorylation activity, we found that the small GTPase Rheb is recruited to the mitochondrial outer membrane. This mitochondrial localization of Rheb promotes mitophagy through a physical interaction with the mitochondrial autophagic receptor Nix and the autophagosomal protein LC3-II. Thus, Rheb-dependent mitophagy contributes to the maintenance of optimal mitochondrial energy production. Our data suggest that mitochondrial degradation contributes to a bulk renewal of the organelle in order to prevent mitochondrial aging and to maintain the efficiency of oxidative phosphorylation.
The International Journal of Biochemistry & Cell Biology | 2011
Karine Nouette-Gaulain; Caroline Jose; Xavier Capdevila; Rodrigue Rossignol
The expanding utilization of local anesthesia and analgesia revealed the occurrence of myopathies induced by local anesthetics. Such iatrogenic effect encouraged anesthesiologists to study the toxicity of local anesthetics and to reevaluate their protocols in order to reduce muscle pain and dysfunction. Studies performed in rats and human cells showed that bupivacaine induces muscle histological damages with sarcomers disruption along with structural alteration of mitochondria, the powerplant of the cell. Bupivacaine-induced myopathies (BIM) are underestimated as patients are not examined by the anesthesiologist after the surgery. Biochemical analyses indicate that BIM could be explained both by the alteration of mitochondrial energetics with consecutive oxidative stress and mitophagy, and the modification of sarcoplasmic reticulum activity with perturbations of calcium homeostasis. BIM is time-dependent, local anesthetic concentration-dependent, enhanced by preexisting metabolism alteration or young age, and could be prevented in part by antioxidant agents and rhEPO. These observations suggest that adapted changes in postoperative analgesia protocols, including the adjustment of LA concentration and volume, a more precise delivery of the drug and an adapted duration of analgesia, may prevent myopathies consecutive to local anesthesia.
Biochimica et Biophysica Acta | 2012
Etienne Hebert-Chatelain; Caroline Jose; Nicolas Gutierrez Cortes; Jean-William Dupuy; Christophe Rocher; Jeanne Dachary-Prigent; Thierry Letellier
The tyrosine kinase Src is upregulated in several cancer cells. In such cells, there is a metabolic reprogramming elevating aerobic glycolysis that seems partly dependent on Src activation. Src kinase was recently shown to be targeted to mitochondria where it modulates mitochondrial bioenergetics in non-proliferative tissues and cells. The main goal of our study was to determine if increased Src kinase activity could also influence mitochondrial metabolism in cancer cells (143B and DU145 cells). We have shown that 143B and DU145 cells produce most of the ATP through glycolysis but also that the inhibition of OXPHOS led to a significant decrease in proliferation which was not due to a decrease in the total ATP levels. These results indicate that a more important role for mitochondria in cancer cells could be ensuring mitochondrial functions other than ATP production. This study is the first to show a putative influence of intramitochondrial Src kinase on oxidative phosphorylation in cancer cells. Indeed, we have shown that Src kinase inhibition led to a decrease in mitochondrial respiration via a specific decrease in complex I activities (NADH-ubiquinone oxidoreductase). This decrease is associated with a lower phosphorylation of the complex I subunit NDUFB10. These results suggest that the preservation of complex I function by mitochondrial Src kinase could be important in the development of the overall phenotype of cancer.
Antioxidants & Redox Signaling | 2013
Caroline Jose; Su Melser; Giovanni Benard; Rodrigue Rossignol
Adaptation and transformation biology of the mitochondrion to redox status is an emerging domain of physiology and pathophysiology. Mitochondrial adaptations occur in response to accidental changes in cellular energy demand or supply while mitochondrial transformations are a part of greater program of cell metamorphosis. The possible role of mitochondrial adaptations and transformations in pathogenesis remains unexplored, and it has become critical to decipher the stimuli and the underlying molecular pathways. Immediate activation of mitochondrial function was described during acute exercise, respiratory chain injury, Endoplasmic Reticulum stress, genotoxic stress, or environmental toxic insults. Delayed adaptations of mitochondrial form, composition, and functions were evidenced for persistent changes in redox status as observed in endurance training, in fibroblasts grown in presence of respiratory chain inhibitors or in absence of glucose, in the smooth muscle of patients with severe asthma, or in the skeletal muscle of patients with a mitochondrial disease. Besides, mitochondrial transformations were observed in the course of human cell differentiation, during immune response activation, or in cells undergoing carcinogenesis. Little is known on the signals and downstream pathways that govern mitochondrial adaptations and transformations. Few adaptative loops, including redox sensors, kinases, and transcription factors were deciphered, but their implication in physiology and pathology remains elusive. Mitoplasticity could play a protective role against aging, diabetes, cancer, or neurodegenerative diseases. Research on adaptation and transformation could allow the design of innovative therapies, notably in cancer.
The International Journal of Biochemistry & Cell Biology | 2013
Caroline Jose; Rodrigue Rossignol
In the 1920s, Otto Warburg first hypothesized that mitochondrial impairment is a leading cause of cancer although he recognized the existence of oxidative tumors. Likewise, Weinhouse and others in the 50s found that deficient mitochondrial respiration is not an obligatory feature of cancer and Peter Vaupel suggested in the 1990s that tumor oxygenation rather than OXPHOS capacity was the limiting factor of mitochondrial energy production in cancer. Recent studies now clearly indicate that mitochondria are highly functional in mice tumors and the field of oncobioenergetic identified MYC, Oct1 and RAS as pro-OXPHOS oncogenes. In addition, cancer cells adaptation to aglycemia, metabolic symbiosis between hypoxic and non-hypoxic tumor regions as well the reverse Warburg hypothesis support the crucial role of mitochondria in the survival of a subclass of tumors. Therefore, mitochondria are now considered as potential targets for anti-cancer therapy and tentative strategies including a bioenergetic profile characterization of the tumor and the subsequent adapted bioenergetic modulation could be considered for cancer killing. This article is part of a Directed Issue entitled: Bioenergetic dysfunction, adaptation and therapy.
Mitochondrion | 2012
Caroline Jose; Nadège Bellance; Etienne Hébert Chatelain; Giovanni Benard; Karine Nouette-Gaulain; Rodrigue Rossignol
We assessed the impact of ten mitoactive drugs on the viability and the proliferation of human cancer cells of variable origin and bioenergetics. A validated chemotherapeutic drug, doxorubicin, was used as a gold-standard for comparison. We also looked at the effect of these drugs on Rho(0) cells and on embryonic fibroblasts, both of which rely mainly on glycolysis to generate the vital ATP. The statistical analysis of the area under the curves revealed a cell-type specific response to mitodopant and mitotoxic compounds, in correlation with the contribution of glycolysis to cellular ATP synthesis. These findings indicate that the bioenergetic state of the cell determines in part the impact of mitodopants and mitotoxics on cancer cells viability.
Archive | 2011
Giovanni Benard; Nadège Bellance; Caroline Jose; Rodrigue Rossignol
In this chapter we describe the fundamental mechanisms by which mammalian cells regulate energy production, and we put emphasis on the importance of mitochondrial dynamics for the regulation of bioenergetics. We discuss both the impact of shape changes of the mitochondrion on organellar energy production, and the existence of reverse mechanisms of regulation of mitochondrial fusion and fission by the cellular energy state. Hence, in complement to pioneering concepts of metabolic control which only considered the key controlling steps of energy fluxes at the level of the respiratory chain, the recent study of mitochondrial dynamics highlights new possibilities for OXPHOS control. The implications of such a regulatory loop between mitochondrial dynamics and bioenergetics impacts several fields of human biology, as diverse as embryonic development, energy storage, cell motility, lipid and membrane biogenesis, intracellular trafficking and cell death. In addition, most neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease and Hereditary Spastic Paraplegia are associated with defects in mitochondrial dynamics and bioenergetics. Therefore, to unravel the fundamental mechanisms by which mitochondrial form interacts with mitochondrial function could permit to increase our basic knowledge on the regulation of energy metabolism and to decipher the pathophysiology of a group of rare neuronal diseases.
Archive | 2014
Emilie Obre; Nadège Bellance; Caroline Jose; Giovanni Benard; Karine Nouette-Gaulain; Rodrigue Rossignol
In this chapter we discuss the relevance of mitochondrial functions and plasticity in tumor biology. In 1920, Otto Warburg first hypothesized that mitochondrial impairment is a leading cause of cancer although he recognized the existence of oxidative tumors. Likewise, Weinhouse (1951) and others found that deficient mitochondrial respiration is not an obligatory feature of cancer and Peter Vaupel suggested in the 90s that tumor oxygenation rather than OXPHOS capacity was the limiting factor of mitochondrial energy production in cancer. Recent studies now clearly indicate that mitochondria are highly functional in mice tumors and the field of oncobioenergetics identified MYC, Oct1 and RAS as pro-OXPHOS oncogenes. In addition, cancer cells adaptation to aglycemia, metabolic symbiosis between hypoxic and non-hypoxic tumor regions as well the reverse Warburg hypothesis support the crucial role of mitochondrial plasticity in the survival of a subclass of tumors. Therefore, mitochondria are now considered as potential targets for anti-cancer therapy and tentative strategies including a bioenergetic profile characterization of the tumor and the subsequent adapted bioenergetic modulation could be considered for cancer killing.
Biochimica et Biophysica Acta | 2011
Caroline Jose; Etienne Hebert-Chatelain; Nadège Bellance; Anaïs Larendra; Melser Su; Karine Nouette-Gaulain; Rodrigue Rossignol