Caroline Lecaplain
University of Rouen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Caroline Lecaplain.
Optics Letters | 2007
Caroline Lecaplain; C. Chedot; Ammar Hideur; Biilend Ortac; Jens Limpert
We report on an all-normal-dispersion mode-locked fiber laser based on a large-mode-area Yb-doped microstructure fiber and using a high nonlinear modulation depth semiconductor saturable absorber mirror. The laser delivers 3.3 W of average output power with positively chirped 5.5 ps pulses at a center wavelength of 1033 nm. The pulse repetition rate is 46.4 MHz, which results in an energy per pulse of 71 nJ. These pulses are extracavity dechirped down to 516 fs by using bulk gratings. The average power of the dechirped pulses is 2.3 W, which corresponds to a peak power of more than 96 kW.
Optics Letters | 2010
Martin Baumgartl; Bülend Ortaç; Caroline Lecaplain; Ammar Hideur; Jens Limpert; Andreas Tünnermann
We report on high-energy ultrashort pulse generation from an all-normal-dispersion large-mode-area fiber laser by exploiting an efficient combination of nonlinear polarization evolution (NPE) and a semiconductor-based saturable absorber mode-locking mechanism. The watt-level laser directly emits chirped pulses with a duration of 1 ps and 163 nJ of pulse energy. These can be compressed to 77 fs, generating megawatt-level peak power. Intracavity dynamics are discussed by numerical simulation, and the intracavity pulse evolution reveals that NPE plays a key role in pulse shaping.
Optics Letters | 2010
Caroline Lecaplain; Bülend Ortaç; Guillaume Machinet; Johan Boullet; Martin Baumgartl; T. Schreiber; Eric Cormier; Ammar Hideur
We report the generation of high-energy high-peak power pulses in an all-normal dispersion fiber laser featuring large-mode-area photonic crystal fibers. The self-starting chirped-pulse fiber oscillator delivers 11 W of average power at 15.5 MHz repetition rate, resulting in 710 nJ of pulse energy. The output pulses are dechirped outside the cavity from 7 ps to nearly transform-limited duration of 300 fs, leading to pulse peak powers as high as 1.9 MW. Numerical simulations reveal that pulse shaping is dominated by the amplitude modulation and spectral filtering provided by a resonant semiconductor saturable absorber.
Optics Letters | 2012
Martin Baumgartl; Caroline Lecaplain; Ammar Hideur; Jens Limpert; Andreas Tünnermann
Performance scaling of passively mode-locked ultrashort-pulse fiber oscillators in terms of average power, peak power, and pulse energy is demonstrated. A very-large-mode-area fiber laser in an all-positive group-velocity-dispersion ring cavity configuration with intracavity spectral filter, mode-locked by nonlinear polarization evolution, emits 66 W of average power at 76 MHz repetition rate, corresponding to 0.9 μJ pulse energy. The pulses are dechirped to 91 fs outside the cavity with an average power of 60 W remaining after the compressor. The generated pulse peak power is as high as 7 MW.
Optics Express | 2011
Caroline Lecaplain; Martin Baumgartl; Thomas Schreiber; Ammar Hideur
We report on the generation of high-energy pulses in an all normal dispersion photonic-crystal fiber laser. Two mode-locking techniques with and without passive spectral filtering are studied both numerically and experimentally to address a roadmap for energy scaling. It is found that high-contrast passive modulation is a very promising mode-locking technique for energy scaling in dissipative-soliton laser. Moreover, this technique does not need any additional spectral filtering than the limited gain bandwidth to stabilize high-energy ultrashort pulses. The presented laser generates 110 nJ chirped pulses at 57 MHz repetition rate for an average power of 6.2 W. The output pulses could be dechirped close to the transform-limited duration of 100 fs.
Optics Letters | 2009
Caroline Lecaplain; Bülend Ortaç; Ammar Hideur
We report on the generation of high-energy femtosecond pulses from an ytterbium-doped photonic crystal fiber oscillator. Sub-150 fs pulses are obtained at low-cavity dispersion. By increasing the normal cavity dispersion, pulse energy exceeds 100 nJ.
Nature Communications | 2016
Caroline Lecaplain; Clément Javerzac-Galy; M. L. Gorodetsky; Tobias J. Kippenberg
The unavailability of highly transparent materials in the mid-infrared has been the main limitation in the development of ultra-sensitive molecular sensors or cavity-based spectroscopy applications. Whispering gallery mode microresonators have attained ultra-high-quality (Q) factor resonances in the near-infrared and visible. Here we report ultra-high Q factors in the mid-infrared using polished alkaline earth metal fluoride crystals. Using an uncoated chalcogenide tapered fibre as a high-ideality coupler in the mid-infrared, we study via cavity ringdown technique the losses of BaF2, CaF2, MgF2 and SrF2 microresonators. We show that MgF2 is limited by multiphonon absorption by studying the temperature dependence of the Q factor. In contrast, in SrF2 and BaF2 the lower multiphonon absorption leads to ultra-high Q factors at 4.5 μm. These values correspond to an optical finesse of , the highest value achieved for any type of mid-infrared resonator to date.
Optics Letters | 2010
Jerome Lhermite; Guillaume Machinet; Caroline Lecaplain; J. Boullet; Nicholas Traynor; Ammar Hideur; Eric Cormier
We report on a passively mode-locked fiber laser emitting around 976nm. The self-starting mode locking is achieved in an unidirectional ring cavity by means of nonlinear polarization evolution. Stable single-pulse operation is observed for 480mW of average output power. This all-normal dispersion laser generates naturally chirped pulses with 1ps duration. The repetition rate is 40.6MHz, resulting in 12nJ pulse energy. External compression using bulk grating shortens the pulse duration down to 286fs.
Optics Letters | 2009
Caroline Lecaplain; Ammar Hideur; Sébastien Février; Philippe Roy
We report on a mode-locked fiber laser featuring an Yb-doped large-mode-area Bragg fiber and exploiting dissipative-soliton pulse shaping. Reliable self-starting mode-locking is achieved using a fast semiconductor saturable absorber mirror. The laser generates 30 nJ chirped pulses at 17 MHz repetition rate for an average power of 510 mW. The 3.2 ps output pulses are compressed outside the cavity to 440 fs.
Optics Letters | 2011
Jerome Lhermite; Caroline Lecaplain; Guillaume Machinet; Romain Royon; Ammar Hideur; Eric Cormier
We report on high-energy femtosecond pulse generation from an ytterbium-doped rod-type fiber oscillator emitting around 976 nm. Self-starting and stable single-pulse operation are demonstrated with 4.2 W of average output power at a repetition rate of 8.4 MHz. The resulting energy level reaches 0.5 μJ. Because of the all-normal dispersion of the laser cavity, output pulses are naturally chirped with a duration of 14 ps. External compression using diffraction gratings shortens the pulse duration down to 460 fs.