Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Caroline M. Curtin is active.

Publication


Featured researches published by Caroline M. Curtin.


Advanced Materials | 2012

Innovative Collagen Nano‐Hydroxyapatite Scaffolds Offer a Highly Efficient Non‐Viral Gene Delivery Platform for Stem Cell‐Mediated Bone Formation

Caroline M. Curtin; Gráinne M. Cunniffe; Frank Lyons; Kazuhisa Bessho; Glenn R. Dickson; Garry P. Duffy; Fergal J. O'Brien

The ability of nano-hydroxyapatite (nHA) particles developed in-house to act as non-viral delivery vectors is assessed. These nHA particles are combined with collagen to yield bioactive, biodegradable collagen nano-hydroxyapatite (coll-nHA) scaffolds. Their ability to act as gene-activated matrices for BMP2 delivery is demonstrated with successful transfection of mesenchymal stem cells (MSCs) resulting in high calcium production.


Journal of Controlled Release | 2015

Life in 3D is never flat: 3D models to optimise drug delivery

Kathleen A. Fitzgerald; Meenakshi Malhotra; Caroline M. Curtin; Fergal J. O’Brien; Caitriona M. O’Driscoll

The development of safe, effective and patient-acceptable drug products is an expensive and lengthy process and the risk of failure at different stages of the development life-cycle is high. Improved biopharmaceutical tools which are robust, easy to use and accurately predict the in vivo response are urgently required to help address these issues. In this review the advantages and challenges of in vitro 3D versus 2D cell culture models will be discussed in terms of evaluating new drug products at the pre-clinical development stage. Examples of models with a 3D architecture including scaffolds, cell-derived matrices, multicellular spheroids and biochips will be described. The ability to simulate the microenvironment of tumours and vital organs including the liver, kidney, heart and intestine which have major impact on drug absorption, distribution, metabolism and toxicity will be evaluated. Examples of the application of 3D models including a role in formulation development, pharmacokinetic profiling and toxicity testing will be critically assessed. Although utilisation of 3D cell culture models in the field of drug delivery is still in its infancy, the area is attracting high levels of interest and is likely to become a significant in vitro tool to assist in drug product development thus reducing the requirement for unnecessary animal studies.


Advanced Healthcare Materials | 2015

Combinatorial Gene Therapy Accelerates Bone Regeneration: Non‐Viral Dual Delivery of VEGF and BMP2 in a Collagen‐Nanohydroxyapatite Scaffold

Caroline M. Curtin; Erica G. Tierney; Kevin McSorley; Sally-Ann Cryan; Garry P. Duffy; Fergal J. O'Brien

Vascularization and bone repair are accelerated by a series of gene-activated scaffolds delivering both an angiogenic and an osteogenic gene. Stem cell-mediated osteogenesis in vitro, in addition to increased vascularization and bone repair by host cells in vivo, is enhanced using all systems while the use of the nanohydroxyapatite vector to deliver both genes markedly enhances bone healing.


Human Gene Therapy | 2010

Mesenchymal stem cells and osteoarthritis: remedy or accomplice?

Cynthia M. Coleman; Caroline M. Curtin; Frank Barry; Cathal O'Flatharta; J. Mary Murphy

Multipotent mesenchymal stromal or stem cells (MSCs) are likely to be agents of connective tissue homeostasis and repair. Because the hallmark of osteoarthritis (OA) is degeneration and failure to repair connective tissues it is compelling to think that these cells have a role to play in OA. Indeed, MSCs have been implicated in the pathogenesis of OA and, in turn, progression of the disease has been shown to be therapeutically modulated by MSCs. This review discusses current knowledge on the potential of both marrow- and local joint-derived MSCs in OA, the mode of action of the cells, and possible effects of the osteoarthritic niche on the function of MSCs. The use of stem cells for repair of isolated cartilage lesions and strategies for modulation of OA using local cell delivery are discussed as well as therapeutic options for the future to recruit and appropriately activate endogenous progenitors and/or locally systemically administered MSCs in the early stages of the disease. The use of gene therapy protocols, particularly as they pertain to modulation of inflammation associated with the osteoarthritic niche, offer an additional option in the treatment of this chronic disease. In summary, elucidation of the etiology of OA and development of technologies to detect early disease, allied to an increased understanding of the role MSCs in aging and OA, should lead to more targeted and efficacious treatments for this debilitating chronic disease in the future.


Journal of Controlled Release | 2015

Development of a gene-activated scaffold platform for tissue engineering applications using chitosan-pDNA nanoparticles on collagen-based scaffolds

Rosanne M. Raftery; Erica G. Tierney; Caroline M. Curtin; Sally-Ann Cryan; Fergal J. O'Brien

Biomaterial scaffolds that support cell infiltration and tissue formation can also function as platforms for the delivery of therapeutics such as drugs, proteins, and genes. As burst release of supraphysiological quantities of recombinant proteins can result in adverse side effects, the objective of this study was to explore the potential of a series of collagen-based scaffolds, developed in our laboratory, as gene-activated scaffold platforms with potential in a range of tissue engineering applications. The potential of chitosan, a biocompatible material derived from the shells of crustaceans, as a gene delivery vector was assessed using mesenchymal stem cells (MSCs). A transfection efficiency of >45% is reported which is similar to what is achieved with polyethyleneimine (PEI), a non-viral gold standard vector, without causing cytotoxic side effects. When the optimised chitosan nanoparticles were incorporated into a series of collagen-based scaffolds, sustained transgene expression from MSCs seeded on the scaffolds was maintained for up to 28days and interestingly the composition of the scaffold had an effect on transfection efficiency. These results demonstrate that by simply varying the scaffold composition and the gene (or combinations thereof) chosen; the system has potential for a myriad of therapeutic applications.


Journal of Controlled Release | 2015

A novel collagen-nanohydroxyapatite microRNA-activated scaffold for tissue engineering applications capable of efficient delivery of both miR-mimics and antagomiRs to human mesenchymal stem cells

Irene Mencía Castaño; Caroline M. Curtin; Georgina Shaw; J. Mary Murphy; Garry P. Duffy; Fergal J. O'Brien

Manipulation of gene expression through the use of microRNAs (miRNAs) offers tremendous potential for the field of tissue engineering. However, the lack of sufficient site-specific and bioactive delivery systems has severely hampered the clinical translation of miRNA-based therapies. In this study, we developed a novel non-viral bioactive delivery platform for miRNA mimics and antagomiRs to allow for a vast range of therapeutic applications. By combining nanohydroxyapatite (nHA) particles with reporter miRNAs (nanomiRs) and collagen-nanohydroxyapatite scaffolds, this work introduces the first non-viral, non-lipid platform to date, capable of efficient delivery of mature miRNA molecules to human mesenchymal stem cells (hMSCs), a particularly difficult cell type to transfect effectively, with minimal treatment-associated cytotoxicity. Firstly, miRNAs were successfully delivered to hMSCs in monolayer, with internalisation efficiencies of 17.4 and 39.6% for nanomiR-mimics and nanoantagomiRs respectively, and both nanomiR-mimics and nanoantagomiRs yielded sustained interfering activity of greater than 90% in monolayer over 7 days. When applied to 3D scaffolds, significant RNA interference of 20% for nanomiR-mimics and 88.4% for nanoantagomiRs was achieved with no cytotoxicity issues over a 7 day period. In summary, in-house synthesised non-viral nHA particles efficiently delivered reporter miRNAs both in monolayer and on scaffolds demonstrating the immense potential of this innovative miRNA-activated scaffold system for tissue engineering applications.


Biomaterials | 2015

The use of collagen-based scaffolds to simulate prostate cancer bone metastases with potential for evaluating delivery of nanoparticulate gene therapeutics.

Kathleen A. Fitzgerald; Jianfeng Guo; Erica G. Tierney; Caroline M. Curtin; Meenakshi Malhotra; Raphael Darcy; Fergal J. O'Brien; Caitriona M. O'Driscoll

Prostate cancer bone metastases are a leading cause of cancer-related death in men with current treatments offering only marginally improved rates of survival. Advances in the understanding of the genetic basis of prostate cancer provide the opportunity to develop gene-based medicines capable of treating metastatic disease. The aim of this work was to establish a 3D cell culture model of prostate cancer bone metastasis using collagen-based scaffolds, to characterise this model, and to assess the potential of the model to evaluate delivery of gene therapeutics designed to target bone metastases. Two prostate cancer cell lines (PC3 and LNCaP) were cultured in 2D standard culture and compared to 3D cell growth on three different collagen-based scaffolds (collagen and composites of collagen containing either glycosaminoglycan or nanohydroxyapatite). The 3D model was characterised for cell proliferation, viability and for matrix metalloproteinase (MMP) enzyme and Prostate Specific Antigen (PSA) secretion. Chemosensitivity to docetaxel treatment was assessed in 2D in comparison to 3D. Nanoparticles (NPs) containing siRNA formulated using a modified cyclodextrin were delivered to the cells on the scaffolds and gene silencing was quantified. Both prostate cancer cell lines actively infiltrated and proliferated on the scaffolds. Cell culture in 3D resulted in reduced levels of MMP1 and MMP9 secretion in PC3 cells. In contrast, LNCaP cells grown in 3D secreted elevated levels of PSA, particularly on the scaffold composed of collagen and glycosaminoglycans. Both cell lines grown in 3D displayed increased resistance to docetaxel treatment. The cyclodextrin.siRNA nanoparticles achieved cellular uptake and knocked down the endogenous GAPDH gene in the 3D model. In conclusion, development of a novel 3D cell culture model of prostate cancer bone metastasis has been initiated resulting, for the first time, in the successful delivery of gene therapeutics in a 3D in vitro model. Further enhancement of this model will help elucidate the pathogenesis of prostate cancer and also accelerate the design of effective therapies which can penetrate into the bone microenvironment for prostate cancer therapy.


Scientific Reports | 2016

Next generation bone tissue engineering: non-viral miR-133a inhibition using collagen-nanohydroxyapatite scaffolds rapidly enhances osteogenesis.

Irene Mencía Castaño; Caroline M. Curtin; Garry P. Duffy; Fergal J. O’Brien

Bone grafts are the second most transplanted materials worldwide at a global cost to healthcare systems valued over


Organogenesis | 2013

Non-viral gene-activated matrices: Next generation constructs for bone repair

Erica G. Tierney; Garry P. Duffy; Sally-Ann Cryan; Caroline M. Curtin; Fergal J. O’Brien

30 billion every year. The influence of microRNAs in the regenerative capacity of stem cells offers vast therapeutic potential towards bone grafting; however their efficient delivery to the target site remains a major challenge. This study describes how the functionalisation of porous collagen-nanohydroxyapatite (nHA) scaffolds with miR-133a inhibiting complexes, delivered using non-viral nHA particles, enhanced human mesenchymal stem cell-mediated osteogenesis through the novel focus on a key activator of osteogenesis, Runx2. This study showed enhanced Runx2 and osteocalcin expression, as well as increased alkaline phosphatase activity and calcium deposition, thus demonstrating a further enhanced therapeutic potential of a biomaterial previously optimised for bone repair applications. The promising features of this platform offer potential for a myriad of applications beyond bone repair and tissue engineering, thus presenting a new paradigm for microRNA-based therapeutics.


ACS Applied Materials & Interfaces | 2016

Content-Dependent Osteogenic Response of Nanohydroxyapatite: An in Vitro and in Vivo Assessment within Collagen-Based Scaffolds

Gráinne M. Cunniffe; Caroline M. Curtin; Emmet M. Thompson; Glenn R. Dickson; Fergal J. O’Brien

In the context of producing enhanced therapeutics for regenerative medicine, our laboratory develops gene-activated matrices (GAMs) using non-viral gene therapy (GT) in combination with collagen-based scaffolds engineered specifically for tissue repair. Non-viral vectors have been referred to as a minority pursuit in GT but considering the concerns associated with viral vectors and as transient gene expression is such a key consideration, further research is clearly warranted for tissue engineering (TE) applications. Mesenchymal stem cells (MSCs) are well regarded for their capability in bone regeneration but as primary cells, they are difficult to transfect. We have recently optimised the non-viral vector, polyethyleneimine (PEI), to achieve high transfection efficiencies in MSCs. Subsequently, a series of PEI-based GAMs were developed using collagen, collagen-glycosaminoglycan and collagen-nanohydroxyapatite (collagen-nHa) scaffolds whereby transgene expression was detected up to 21 d with the collagen-nHa scaffold providing the most prolonged expression. Moreover, all PEI-based GAMs contained a low plasmid DNA dose of 2 µg which is far below doses often required in previous GAMs. Having successfully developed these GAMs, the ephrinB2 gene has recently been incorporated to produce a novel therapeutic GAM for bone repair. Herein, we discuss our recent investigations in the development and application of non-viral GAMs.

Collaboration


Dive into the Caroline M. Curtin's collaboration.

Top Co-Authors

Avatar

Fergal J. O'Brien

Royal College of Surgeons in Ireland

View shared research outputs
Top Co-Authors

Avatar

Garry P. Duffy

Royal College of Surgeons in Ireland

View shared research outputs
Top Co-Authors

Avatar

Erica G. Tierney

Royal College of Surgeons in Ireland

View shared research outputs
Top Co-Authors

Avatar

Fergal J. O’Brien

Royal College of Surgeons in Ireland

View shared research outputs
Top Co-Authors

Avatar

Sally-Ann Cryan

Royal College of Surgeons in Ireland

View shared research outputs
Top Co-Authors

Avatar

Irene Mencía Castaño

Royal College of Surgeons in Ireland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jianfeng Guo

University College Cork

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge