Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Caroline Marcon is active.

Publication


Featured researches published by Caroline Marcon.


Genome Research | 2012

Complementation contributes to transcriptome complexity in maize (Zea mays L.) hybrids relative to their inbred parents

Anja Paschold; Yi Jia; Caroline Marcon; Steve Lund; Nick B. Larson; Cheng-Ting Yeh; Stephan Ossowski; Christa Lanz; Dan Nettleton; Frank Hochholdinger

Typically, F(1)-hybrids are more vigorous than their homozygous, genetically distinct parents, a phenomenon known as heterosis. In the present study, the transcriptomes of the reciprocal maize (Zea mays L.) hybrids B73×Mo17 and Mo17×B73 and their parental inbred lines B73 and Mo17 were surveyed in primary roots, early in the developmental manifestation of heterotic root traits. The application of statistical methods and a suitable experimental design established that 34,233 (i.e., 86%) of all high-confidence maize genes were expressed in at least one genotype. Nearly 70% of all expressed genes were differentially expressed between the two parents and 42%-55% of expressed genes were differentially expressed between one of the parents and one of the hybrids. In both hybrids, ∼10% of expressed genes exhibited nonadditive gene expression. Consistent with the dominance model (i.e., complementation) for heterosis, 1124 genes that were expressed in the hybrids were expressed in only one of the two parents. For 65 genes, it could be shown that this was a consequence of complementation of genomic presence/absence variation. For dozens of other genes, alleles from the inactive inbred were activated in the hybrid, presumably via interactions with regulatory factors from the active inbred. As a consequence of these types of complementation, both hybrids expressed more genes than did either parental inbred. Finally, in hybrids, ∼14% of expressed genes exhibited allele-specific expression (ASE) levels that differed significantly from the parental-inbred expression ratios, providing further evidence for interactions of regulatory factors from one parental genome with target genes from the other parental genome.


Theoretical and Applied Genetics | 2010

Molecular dissection of heterosis manifestation during early maize root development

Anja Paschold; Caroline Marcon; Nadine Hoecker; Frank Hochholdinger

Heterosis is of paramount agronomic importance and has been successfully exploited in maize hybrid breeding for decades. Nevertheless, the molecular basis of heterosis remains elusive. Heterosis is not only observed in adult traits like yield or plant height, but is already detected during embryo and seedling development. Hence, the maize (Zea mays L.) primary root which is the first organ that emerges after germination is a suitable model to study heterosis manifestation. Various seedling root traits including primary root length and lateral root density display heterosis. Microarray studies suggest organ specific patterns of nonadditive gene expression in maize hybrids. Moreover, such experiments support the notion that global expression trends in maize primary roots are conserved between different hybrids. Furthermore, nonadditive expression patterns of specific genes such as a SUPEROXIDE DISMUTASE 2 might contribute to the early manifestation of heterosis. Proteome profiling experiments of maize hybrid primary roots revealed nonadditive accumulation patterns that were distinct from the corresponding RNA profiles underscoring the importance of posttranscriptional processes such as protein modifications that might be related to heterosis. Finally, analysis of selected metabolites imply that a subtle regulation of particular biochemical pathways such as the phenylpropanoid pathway in hybrids might contribute to the manifestation of heterosis in maize primary roots. In the future, recently developed molecular tools will facilitate the analysis of the molecular principles underlying heterosis in maize roots.


Journal of Proteome Research | 2010

Nonadditive protein accumulation patterns in Maize (Zea mays L.) hybrids during embryo development.

Caroline Marcon; André Schützenmeister; Wolfgang Schütz; Johannes Madlung; Hans-Peter Piepho; Frank Hochholdinger

Heterosis describes the superior performance of heterozygous F(1)-hybrid plants compared to their homozygous parental inbred lines. In the present study, heterosis was detected for length, weight, and the time point of seminal root primordia initiation in maize (Zea mays L.) embryos of the reciprocal F(1)-hybrids UH005xUH250 and UH250xUH005. A two-dimensional gel electrophoresis (2-DE) proteome survey of the most abundant proteins of the reciprocal hybrids and their parental inbred lines 25 and 35 days after pollination revealed that 141 of 597 detected proteins (24%) exhibited nonadditive accumulation in at least one hybrid. Approximately 44% of all nonadditively accumulated proteins displayed an expression pattern that was not distinguishable from the low parent value. Electrospray ionization-tandem mass spectrometry (ESI-MS/MS) analyses and subsequent functional classification of the 141 proteins revealed that development, protein metabolism, redox-regulation, glycolysis, and amino acid metabolism were the most prominent functional classes among nonadditively accumulated proteins. In 35-day-old embryos of the hybrid UH250xUH005, a significant up-regulation of enzymes related to glucose metabolism which often exceeded the best parent values was observed. A comparison of nonadditive protein accumulation between rice and maize embryo data sets revealed a significant overlap of nonadditively accumulated proteins suggesting conserved organ- or tissue-specific regulatory mechanisms in monocots related to heterosis.


Journal of Experimental Botany | 2016

Extensive tissue-specific transcriptomic plasticity in maize primary roots upon water deficit

Nina Opitz; Caroline Marcon; Anja Paschold; Waqas Ahmed Malik; Andrew Lithio; Ronny Brandt; Hans-Peter Piepho; Dan Nettleton; Frank Hochholdinger

Highlight Maize primary root tissues display extensive transcriptomic plasticity upon water deficit. The most significant adaptive changes in the elongation zone lead to reprogramming of metabolism and cell wall organization.


The Plant Cell | 2014

Nonsyntenic Genes Drive Highly Dynamic Complementation of Gene Expression in Maize Hybrids

Anja Paschold; Nick B. Larson; Caroline Marcon; James C. Schnable; Cheng-Ting Yeh; Christa Lanz; Dan Nettleton; Hans-Peter Piepho; Frank Hochholdinger

This study analyzes how transcriptome diversity between two maize inbred lines affects gene expression patterns in individual root tissues of their F1-hybrid progeny. Tissue-specific variation in single-parent expression (SPE) illustrates the highly dynamic transcriptomic landscape of root tissues. Nonsyntenic genes predominate among SPE genes, indicating their young evolutionary age. Maize (Zea mays) displays an exceptional level of structural genomic diversity, which is likely unique among higher eukaryotes. In this study, we surveyed how the genetic divergence of two maize inbred lines affects the transcriptomic landscape in four different primary root tissues of their F1-hybrid progeny. An extreme instance of complementation was frequently observed: genes that were expressed in only one parent but in both reciprocal hybrids. This single-parent expression (SPE) pattern was detected for 2341 genes with up to 1287 SPE patterns per tissue. As a consequence, the number of active genes in hybrids exceeded that of their parents in each tissue by >400. SPE patterns are highly dynamic, as illustrated by their excessive degree of tissue specificity (80%). The biological significance of this type of complementation is underpinned by the observation that a disproportionally high number of SPE genes (75 to 82%) is nonsyntenic, as opposed to all expressed genes (36%). These genes likely evolved after the last whole-genome duplication and are therefore younger than the syntenic genes. In summary, SPE genes shape the remarkable gene expression plasticity between root tissues and complementation in maize hybrids, resulting in a tissue-specific increase of active genes in F1-hybrids compared with their inbred parents.


Journal of Experimental Botany | 2014

The Aux/IAA gene rum1 involved in seminal and lateral root formation controls vascular patterning in maize (Zea mays L.) primary roots

Yanxiang Zhang; Anja Paschold; Caroline Marcon; Sanzhen Liu; Huanhuan Tai; Josefine Nestler; Cheng-Ting Yeh; Nina Opitz; Christa Lanz; Frank Hochholdinger

Summary RNA-Seq of RUM1-dependent gene expression in maize primary roots, in combination with histological analyses, highlighted the regulation of auxin signal transduction by RUM1 and its role in vascular development.


European Journal of Cell Biology | 2010

Regulation of the plant plasma membrane H+-ATPase by its C-terminal domain: what do we know for sure?

Corinna Speth; Nina Jaspert; Caroline Marcon; Claudia Oecking

The plant plasma membrane H(+)-ATPase is kept at a low activity level by its C-terminal domain, the inhibitory function of which is thought to be mediated by two regions (region I and II) interacting with cytoplasmic domains essential for the catalytic cycle. The activity of the enzyme is well known to be regulated by 14-3-3 proteins, the association of which requires phosphorylation of the penultimate H(+)-ATPase residue, but can be abolished by phosphorylation of residues close-by. The current knowledge about H(+)-ATPase regulation is briefly summed up here, combined with data that query some of the above statements. Expression of various C-terminal deletion constructs of PMA2, a H(+)-ATPase isoform from Nicotiana plumbaginifolia, in yeast indicates that three regions, which do not correspond to regions I or II, contribute to autoinhibition. Their individual and combined action can be abolished by (mimicking) phosphorylation of three threonine residues located within or close to these regions. With respect to the wild-type PMA2, mimicking phosphorylation of two of these residues increases enzyme activity. However, constitutive activation of wild-type PMA2 requires 14-3-3 association. Altogether, the data suggest that regulation of the plant H(+)-ATPase occurs in progressive steps, mediated by several protein kinases and phosphatases, thus allowing gradual as well as fine-tuned adjustment of its activity. Moreover, mating-based split ubiquitin assays indicate a complex interplay between the C-terminal domain and the rest of the enzyme. Notably, their tight contact does not seem to be the cause of the inactive state of the enzyme.


Journal of Proteomics | 2013

Heterosis-associated proteome analyses of maize (Zea mays L.) seminal roots by quantitative label-free LC–MS

Caroline Marcon; Tobias Lamkemeyer; Waqas Ahmed Malik; Denise Ungrue; Hans-Peter Piepho; Frank Hochholdinger

UNLABELLED Heterosis is the superior performance of heterozygous F1-hybrid plants compared to their homozygous genetically distinct parents. Seminal roots are embryonic roots that play an important role during early maize (Zea mays L.) seedling development. In the present study the most abundant soluble proteins of 2-4cm seminal roots of the reciprocal maize F1-hybrids B73×Mo17 and Mo17×B73 and their parental inbred lines B73 and Mo17 were quantified by label-free LC-MS/MS. In total, 1918 proteins were detected by this shot-gun approach. Among those, 970 were represented by at least two peptides and were further analyzed. Eighty-five proteins displayed non-additive accumulation in at least one hybrid. The functional category protein metabolism was the most abundant class of non-additive proteins represented by 27 proteins. Within this category 16 of 17 non-additively accumulated ribosomal proteins showed high or above high parent expression in seminal roots. These results imply that an increased protein synthesis rate in hybrids might be related to the early manifestation of hybrid vigor in seminal roots. BIOLOGICAL SIGNIFICANCE In the present study a shot-gun proteomics approach allowed for the identification of 1917 proteins and analysis of 970 seminal root proteins of maize that were represented by at least 2 peptides. The comparison of proteome complexity of reciprocal hybrids and their parental inbred lines indicates an increased protein synthesis rate in hybrids that may contribute to the early manifestation of heterosis in seminal roots. This article is part of a Special Issue entitled: Translational Plant Proteomics.


Plant Physiology | 2016

Root type specific reprogramming of maize pericycle transcriptomes by local high nitrate results in disparate lateral root branching patterns

Peng Yu; Jutta A. Baldauf; Andrew Lithio; Caroline Marcon; Dan Nettleton; Chunjian Li; Frank Hochholdinger

Root type-specific lateral root branching and pericycle-specific transcriptome reprogramming highlight diverse foraging strategies of maize roots in heterogeneous nitrate environments. The adaptability of root system architecture to unevenly distributed mineral nutrients in soil is a key determinant of plant performance. The molecular mechanisms underlying nitrate dependent plasticity of lateral root branching across the different root types of maize are only poorly understood. In this study, detailed morphological and anatomical analyses together with cell type-specific transcriptome profiling experiments combining laser capture microdissection with RNA-seq were performed to unravel the molecular signatures of lateral root formation in primary, seminal, crown, and brace roots of maize (Zea mays) upon local high nitrate stimulation. The four maize root types displayed divergent branching patterns of lateral roots upon local high nitrate stimulation. In particular, brace roots displayed an exceptional architectural plasticity compared to other root types. Transcriptome profiling revealed root type-specific transcriptomic reprogramming of pericycle cells upon local high nitrate stimulation. The alteration of the transcriptomic landscape of brace root pericycle cells in response to local high nitrate stimulation was most significant. Root type-specific transcriptome diversity in response to local high nitrate highlighted differences in the functional adaptability and systemic shoot nitrogen starvation response during development. Integration of morphological, anatomical, and transcriptomic data resulted in a framework underscoring similarity and diversity among root types grown in heterogeneous nitrate environments.


Journal of Experimental Botany | 2016

Transcriptomic and anatomical complexity of primary, seminal, and crown roots highlight root type-specific functional diversity in maize (Zea mays L.)

Huanhuan Tai; Xin Lu; Nina Opitz; Caroline Marcon; Anja Paschold; Andrew Lithio; Dan Nettleton; Frank Hochholdinger

Maize develops a complex root system composed of embryonic and post-embryonic roots. Spatio-temporal differences in the formation of these root types imply specific functions during maize development. A comparative transcriptomic study of embryonic primary and seminal, and post-embryonic crown roots of the maize inbred line B73 by RNA sequencing along with anatomical studies were conducted early in development. Seminal roots displayed unique anatomical features, whereas the organization of primary and crown roots was similar. For instance, seminal roots displayed fewer cortical cell files and their stele contained more meta-xylem vessels. Global expression profiling revealed diverse patterns of gene activity across all root types and highlighted the unique transcriptome of seminal roots. While functions in cell remodeling and cell wall formation were prominent in primary and crown roots, stress-related genes and transcriptional regulators were over-represented in seminal roots, suggesting functional specialization of the different root types. Dynamic expression of lignin biosynthesis genes and histochemical staining suggested diversification of cell wall lignification among the three root types. Our findings highlight a cost-efficient anatomical structure and a unique expression profile of seminal roots of the maize inbred line B73 different from primary and crown roots.

Collaboration


Dive into the Caroline Marcon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge