Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Caroline May is active.

Publication


Featured researches published by Caroline May.


Immunity | 2015

Dietary Fatty Acids Directly Impact Central Nervous System Autoimmunity via the Small Intestine

Aiden Haghikia; Stefanie Jörg; Alexander Duscha; Johannes Berg; Arndt Manzel; Anne Waschbisch; Anna Hammer; De-Hyung Lee; Caroline May; Nicola Wilck; András Balogh; Annika I. Ostermann; Nils Helge Schebb; Denis A. Akkad; Diana A. Grohme; Markus Kleinewietfeld; Stefan Kempa; Jan Thöne; Seray Demir; Dominik Müller; Ralf Gold; Ralf A. Linker

Growing empirical evidence suggests that nutrition and bacterial metabolites might impact the systemic immune response in the context of disease and autoimmunity. We report that long-chain fatty acids (LCFAs) enhanced differentiation and proliferation of T helper 1 (Th1) and/or Th17 cells and impaired their intestinal sequestration via p38-MAPK pathway. Alternatively, dietary short-chain FAs (SCFAs) expanded gut T regulatory (Treg) cells by suppression of the JNK1 and p38 pathway. We used experimental autoimmune encephalomyelitis (EAE) as a model of T cell-mediated autoimmunity to show that LCFAs consistently decreased SCFAs in the gut and exacerbated disease by expanding pathogenic Th1 and/or Th17 cell populations in the small intestine. Treatment with SCFAs ameliorated EAE and reduced axonal damage via long-lasting imprinting on lamina-propria-derived Treg cells. These data demonstrate a direct dietary impact on intestinal-specific, and subsequently central nervous system-specific, Th cell responses in autoimmunity, and thus might have therapeutic implications for autoimmune diseases such as multiple sclerosis.


Methods of Molecular Biology | 2011

Instruments and Methods in Proteomics

Caroline May; Frederic Brosseron; Piotr Chartowski; Cornelia Schumbrutzki; Bodo Schoenebeck; Katrin Marcus

In the past decade, major developments in instrumentation and methodology have been achieved in proteomics. For proteome investigations of complex biological samples derived from cell cultures, tissues, or whole organisms, several techniques are state of the art. Especially, many improvements have been undertaken to quantify differences in protein expression between samples from, e.g., treated vs. untreated cells and healthy vs. control patients. In this review, we give a brief insight into the main techniques, including gel-based protein separation techniques, and the growing field of mass spectrometry.


Proteomics | 2008

Interlocking transcriptomics, proteomics and toponomics technologies for brain tissue analysis in murine hippocampus

Marcus Bode; Martin Irmler; Manuela Friedenberger; Caroline May; Klaus Jung; Christian Stephan; Helmut E. Meyer; Christiane Lach; Reyk Hillert; Andreas Krusche; Johannes Beckers; Katrin Marcus; Walter Schubert

We have correlated transcriptomics, proteomics and toponomics analyses of hippocampus tissue of inbred C57BL/6 mice to analyse the interrelationship of expressed genes and proteins at different levels of organization. We find that transcriptome and proteome levels of function as well as the topological organization of synaptic protein clusters, detected by toponomics at physiological sites of hippocampus CA3 region, are all largely conserved between different mice. While the number of different synaptic states, characterized by distinct synaptic protein clusters, is enormous (>155 000), these states together form synaptic networks defining distinct and mutually exclusive territories in the hippocampus tissue. The findings provide insight in the systems biology of gene expression on transcriptome, proteome and toponome levels of function in the same brain subregion. The approach will lay the ground for designing studies of neurodegeneration in mouse models and human brains.


Journal of Biological Chemistry | 2014

Internal Ribosomal Entry Site (IRES) Activity Generates Endogenous Carboxyl-terminal Domains of Cx43 and Is Responsive to Hypoxic Conditions

Mahboob Ul-Hussain; Stephan Olk; Bodo Schoenebeck; Bianca Wasielewski; Carola Meier; Nora Prochnow; Caroline May; Sara Galozzi; Katrin Marcus; Georg Zoidl; Rolf Dermietzel

Background: Protein fragments of the gap junction Cx43 regulate cellular functions, including resistance to hypoxic stress. Results: Hypoxia-sensitive IRES activity within the coding region of Cx43 is responsible for generating carboxyl-terminal domains. Conclusion: Endogenous fragments of Cx43 seem to convey important non-junctional functions. Significance: Learning how fragments of gap junction proteins are generated is crucial for understanding their functions. Connexin43 (Cx43) is the most abundant gap junction protein in higher vertebrate organisms and has been shown to be involved in junctional and non-junctional functions. In addition to the expression of full-length Cx43, endogenously produced carboxyl-terminal segments of Cx43 have been described and have been suggested to be involved in manifold biological functions, such as hypoxic preconditioning and neuronal migration. Molecular aspects, however, behind the separate generation of carboxyl-terminal segments of Cx43 have remained elusive. Here we report on a mechanism that may play a key role in the separate production of these domains. First, stringent evidence derived from siRNA treatment and specific knockouts revealed significant loss of the low molecular weight fragments of Cx43. By applying a dicistronic vector strategy on transfected cell lines, we were able to identify putative IRES activity (nucleotides 442–637) in the coding region of Cx43, which resides upstream from the nucleotide sequence encoding the carboxyl terminus (nucleotides 637–1149). Functional responsiveness of the endogenous expression of Cx43 fragments to hypoxic/ischemic treatment was evaluated in in vitro and in vivo models, which led to a significant increase of the fastest migrating form (20 kDa) under conditions of metabolic deprivation. By nano-MS spectrometry, we achieved stringent evidence of the identity of the 20-kDa segment as part of the carboxyl-terminal domain of full-length Cx43. Our data prove the existence of endogenously expressed carboxyl-terminal domains, which may serve as valuable tools for further translational application in ischemic disorders.


Journal of Neural Transmission | 2012

A53T-alpha-synuclein-overexpression in the mouse nigrostriatal pathway leads to early increase of 14-3-3 epsilon and late increase of GFAP

Alexander Kurz; Caroline May; Oliver Schmidt; Thorsten Müller; Christian Stephan; Helmut E. Meyer; Suzana Gispert; Georg Auburger; Katrin Marcus

Parkinson’s disease (PD) is a neurodegenerative disorder frequent at old age characterized by atrophy of the nigrostriatal projection. Overexpression and A53T-mutation of the presynaptic, vesicle-associated chaperone alpha-synuclein are known to cause early-onset autosomal dominant PD. We previously generated mice with transgenic overexpression of human A53T-alpha-synuclein (A53T-SNCA) in dopaminergic substantia nigra neurons as a model of early PD. To elucidate the early and late effects of A53T-alpha-synuclein on the proteome of dopaminergic nerve terminals in the striatum, we now investigated expression profiles of young and old mice using two-dimensional fluorescence difference in gel electrophoresis (2D-DIGE) and mass spectrometry. In total, 15 proteins were upregulated and 2 downregulated. Mice before the onset of motor anomalies showed an upregulation of the spot containing 14-3-3 proteins, in particular the epsilon isoform, as well as altered levels of chaperones, vesicle trafficking and bioenergetics proteins. In old mice, the persistent upregulation of 14-3-3 proteins was aggravated by an increase of glial fibrillary acidic protein (GFAP) suggesting astrogliosis due to initial neurodegeneration. Independent immunoblots corroborated GFAP upregulation and 14-3-3 upregulation for the epsilon isoform, and also detected significant eta and gamma changes. Only for 14-3-3 epsilon a corresponding mRNA increase was observed in midbrain, suggesting it is transcribed in dopaminergic perikarya and accumulates as protein in presynapses, together with A53T-SNCA. 14-3-3 proteins associate with alpha-synuclein in vitro and in pathognomonic Lewy bodies of PD brains. They act as chaperones in signaling, dopamine synthesis and stress response. Thus, their early dysregulation probably reflects a response to alpha-synuclein toxicity.


Annals of Anatomy-anatomischer Anzeiger | 2013

Changes in Interleukin-1 alpha serum levels after transplantation of umbilical cord blood cells in a model of perinatal hypoxic-ischemic brain damage.

Katja Rosenkranz; Matthias Tenbusch; Caroline May; Katrin Marcus; Carola Meier

Transplantation of human umbilical cord blood (hUCB) cells is a potential approach for the treatment of perinatal hypoxic-ischemic brain injury. Neurological and motor deficits resulting from the brain lesion are ameliorated upon transplantation. The molecular mechanisms underlying these improvements are currently being unravelled. One parameter identified as part of the beneficial effects of hUCB cells is the reduction of brain inflammation. It is, however, unclear whether the modulation of brain inflammation is due to local or systemic effects of hUCB cells. In this study, the effects of hUCB cell transplantation in a model of perinatal hypoxic-ischemic brain injury were investigated at the systemic level by measurement of serum levels of pro-inflammatory cytokines by multiplex bead arrays. Two days after induction of the brain damage, levels of the pro-inflammatory cytokines Interleukin-1α (IL-1α), Interleukin-1β (IL-1β), and Tumor necrosis factor α (TNFα) were increased in the serum of rats. Application of hUCB cells, in turn, correlated with a reduced elevation of serum levels of these pro-inflammatory cytokines. This decrease was accompanied by a reduced expression of CD68, a marker protein of activated microglia/macrophages in the brain. Therefore, systemic modulation of the immune response by hUCB cells could represent one possible mechanism of how these cells might mediate their beneficial effects. Creation of a regenerative environment with reduced inflammation might account for the functional regeneration observed upon hUCB cell treatment in lesioned animals.


Journal of Proteomics | 2013

Combined enrichment of neuromelanin granules and synaptosomes from human substantia nigra pars compacta tissue for proteomic analysis

S. Plum; Stefan Helling; C. Theiss; Renata Elaine Paraizo Leite; Caroline May; Wilson Jacob-Filho; Martin Eisenacher; Katja Kuhlmann; Helmut E. Meyer; P. Riederer; Lea T. Grinberg; M. Gerlach; Katrin Marcus

UNLABELLED This article gives a detailed description of a protocol using density gradient centrifugation for the enrichment of neuromelanin granules and synaptosomes from low amounts (≥0.15g) of human substantia nigra pars compacta tissue. This has a great advantage compared to already existing methods as it allows for the first time (i) a combined enrichment of neuromelanin granules and synaptosomes and (ii) just minimal amounts of tissue necessary to enable donor specific analysis. Individual specimens were classified as control or diseased according to clinical evaluation and neuropathological examination. For the enrichment of synaptosomes and neuromelanin granules from the same tissue sample density gradient centrifugations using Percoll® and Iodixanol were performed. The purity of resulting fractions was checked by transmission electron microscopy. We were able to establish a reproducible and easy to handle protocol combining two different density gradient centrifugations: using an Iodixanol gradient neuromelanin granules were enriched and in parallel, from the same sample, a fraction of synaptosomes with high purity using a Percoll® gradient was obtained. Our subfractionation strategy will enable a subsequent in depth proteomic characterization of neurodegenerative processes in the substantia nigra pars compacta in patients with Parkinsons disease and dementia with Lewy bodies compared to appropriate controls. BIOLOGICAL SIGNIFICANCE Key features of Parkinsons disease are the degeneration of dopaminergic neurons in the substantia nigra pars compacta, an associated loss of the brain pigment neuromelanin and a resulting impairment of the neuronal network. The accumulation of iron binding neuromelanin granules is age- and disease-dependent and disease specific alterations could affect the neuronal iron homeostasis leading to oxidative stress induced cell death. The focus of the described method is the analysis of neuromelanin granules as well as axonal cell-endings of nerve cells (synaptosomes) of individual donors (control and diseased). It is the basis for the identification of disease-relevant changes in the iron homeostasis and the generation of new insight into altered protein compositions or regulations which might lead to disturbed communications between nerve cells resulting in pathogenic processes.


PLOS ONE | 2014

Highly Immunoreactive IgG Antibodies Directed against a Set of Twenty Human Proteins in the Sera of Patients with Amyotrophic Lateral Sclerosis Identified by Protein Array

Caroline May; Eckhard Nordhoff; Swaantje Casjens; Michael Turewicz; Martin Eisenacher; Ralf Gold; Thomas Brüning; Beate Pesch; Christian Stephan; Dirk Woitalla; Botond Penke; Tamás Janáky; Dezső Virók; László Siklós; József I. Engelhardt; Helmut E. Meyer

Amyotrophic lateral sclerosis (ALS), the most common adult-onset motor neuron disorder, is characterized by the progressive and selective loss of upper and lower motor neurons. Diagnosis of this disorder is based on clinical assessment, and the average survival time is less than 3 years. Injections of IgG from ALS patients into mice are known to specifically mark motor neurons. Moreover, IgG has been found in upper and lower motor neurons in ALS patients. These results led us to perform a case-control study using human protein microarrays to identify the antibody profiles of serum samples from 20 ALS patients and 20 healthy controls. We demonstrated high levels of 20 IgG antibodies that distinguished the patients from the controls. These findings suggest that a panel of antibodies may serve as a potential diagnostic biomarker for ALS.


Proteomics | 2013

Improving the default data analysis workflow for large autoimmune biomarker discovery studies with ProtoArrays.

Michael Turewicz; Caroline May; Maike Ahrens; Dirk Woitalla; Ralf Gold; Swaantje Casjens; Beate Pesch; Thomas Brüning; Helmut E. Meyer; Eckhard Nordhoff; Miriam Böckmann; Christian Stephan; Martin Eisenacher

Contemporary protein microarrays such as the ProtoArray® are used for autoimmune antibody screening studies to discover biomarker panels. For ProtoArray data analysis, the software Prospector and a default workflow are suggested by the manufacturer. While analyzing a large data set of a discovery study for diagnostic biomarkers of the Parkinsons disease (ParkCHIP), we have revealed the need for distinct improvements of the suggested workflow concerning raw data acquisition, normalization and preselection method availability, batch effects, feature selection, and feature validation. In this work, appropriate improvements of the default workflow are proposed. It is shown that completely automatic data acquisition as a batch, a re‐implementation of Prospectors pre‐selection method, multivariate or hybrid feature selection, and validation of the selected protein panel using an independent test set define in combination an improved workflow for large studies.


Journal of Proteome Research | 2012

Proteomic Analysis of Alterations Induced by Perinatal Hypoxic–Ischemic Brain Injury

Katja Rosenkranz; Caroline May; Carola Meier; Katrin Marcus

Perinatal hypoxic-ischemic brain injury is an important cause of neurological deficits still causing mortality and morbidity in the early period of life. As efficient clinical or pharmaceutical strategies to prevent or reduce the outcome of perinatal hypoxic-ischemic brain damage are limited, the development of new therapies is of utmost importance. To evolve innovative therapeutic concepts, elucidation of the mechanisms contributing to the neurological impairments upon hypoxic-ischemic brain injury is necessary. Therefore, we aimed for the identification of proteins that are affected by hypoxic-ischemic brain injury in neonatal rats. To assess changes in protein expression two days after induction of brain damage, a 2D-DIGE based proteome analysis was performed. Among the proteins altered after hypoxic-ischemic brain injury, Calcineurin A, Coronin-1A, as well as GFAP were identified, showing higher expression in lesioned hemispheres. Validation of the changes in Calcineurin A expression by Western Blot analysis demonstrated several truncated forms of this protein generated by limited proteolysis after hypoxia-ischemia. Further analysis revealed activation of calpain, which is involved in the limited proteolysis of Calcineurin. Active forms of Calcineurin are associated with the dephosphorylation of Darpp-32, an effect that was also demonstrated in lesioned hemispheres after perinatal brain injury.

Collaboration


Dive into the Caroline May's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ralf Gold

Ruhr University Bochum

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beate Pesch

Ruhr University Bochum

View shared research outputs
Researchain Logo
Decentralizing Knowledge