Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Caroline Poulsen is active.

Publication


Featured researches published by Caroline Poulsen.


Bulletin of the American Meteorological Society | 2013

Assessment of Global Cloud Datasets from Satellites: Project and Database Initiated by the GEWEX Radiation Panel

Claudia J. Stubenrauch; William B. Rossow; Stefan Kinne; Steven A. Ackerman; G. Cesana; Hélène Chepfer; L. Di Girolamo; Brian Getzewich; A. Guignard; Andrew K. Heidinger; B. C. Maddux; W.P. Menzel; P. Minnis; Cindy Pearl; Steven Platnick; Caroline Poulsen; Jerome Riedi; Sunny Sun-Mack; Andi Walther; D. M. Winker; Shan Zeng; Guangyu Zhao

Clouds cover about 70% of Earths surface and play a dominant role in the energy and water cycle of our planet. Only satellite observations provide a continuous survey of the state of the atmosphere over the entire globe and across the wide range of spatial and temporal scales that compose weather and climate variability. Satellite cloud data records now exceed more than 25 years; however, climate data records must be compiled from different satellite datasets and can exhibit systematic biases. Questions therefore arise as to the accuracy and limitations of the various sensors and retrieval methods. The Global Energy and Water Cycle Experiment (GEWEX) Cloud Assessment, initiated in 2005 by the GEWEX Radiation Panel (GEWEX Data and Assessment Panel since 2011), provides the first coordinated intercomparison of publicly available, standard global cloud products (gridded monthly statistics) retrieved from measurements of multispectral imagers (some with multiangle view and polarization capabilities), IR soun...


Atmospheric Measurement Techniques | 2011

Cloud retrievals from satellite data using optimal estimation: evaluation and application to ATSR

Caroline Poulsen; P. D. Watts; G. E. Thomas; Andrew M. Sayer; Richard Siddans; R. G. Grainger; Bryan N. Lawrence; E. Campmany; S. M. Dean; C. Arnold

Clouds play an important role in balancing the Earth’s radiation budget. Hence, it is vital that cloud climatologies are produced that quantify cloud macro and micro physical parameters and the associated uncertainty. In this paper, we present an algorithm ORAC (Oxford-RAL retrieval of Aerosol and Cloud) which is based on fitting a physically consistent cloud model to satellite observations simultaneously from the visible to the mid-infrared, thereby ensuring that the resulting cloud properties provide both a good representation of the short-wave and long-wave radiative effects of the observed cloud. The advantages of the optimal estimation method are that it enables rigorous error propagation and the inclusion of all measurements and any a priori information and associated errors in a rigorous mathematical framework. The algorithm provides a measure of the consistency between retrieval representation of cloud and satellite radiances. The cloud parameters retrieved are the cloud top pressure, cloud optical depth, cloud effective radius, cloud fraction and cloud phase. The algorithm can be applied to most visible/infrared satellite instruments. In this paper, we demonstrate the applicability to the Along-Track Scanning Radiometers ATSR-2 and AATSR. Examples of applying the algorithm to ATSR-2 flight data are presented and the sensitivity of the retrievals assessed, in particular the algorithm is evaluated for a number of simulated single-layer and multi-layer conditions. The algorithm was found to perform well for single-layer cloud except when the cloud was very thin; i.e., less than 1 optical depths. For the multi-layer cloud, the algorithm was robust except when the upper ice cloud layer is less than five optical depths. In these cases the retrieved cloud top pressure and cloud effective radius become a weighted average of the 2 layers. The sum of optical depth of multi-layer cloud is retrieved well until the cloud becomes thick, greater than 50 optical depths, where the cloud begins to saturate. The cost proved a good indicator of multi-layer scenarios. Both the retrieval cost and the error need to be considered together in order to evaluate the quality of the retrieval. This algorithm in the configuration described here has been applied to both ATSR-2 and AATSR visible and infrared measurements in the context of the GRAPE (Global Retrieval and cloud Product Evaluation) project to produce a 14 yr consistent record for climate research.


Archive | 2009

Oxford-RAL Aerosol and Cloud (ORAC): aerosol retrievals from satellite radiometers

G. E. Thomas; Elisa Carboni; Andrew M. Sayer; Caroline Poulsen; Richard Siddans; R. G. Grainger

This chapter describes an optimal estimation retrieval scheme for the derivation of the properties of atmospheric aerosol from top-of-atmosphere (TOA) radiances measured by satellite-borne visible-IR radiometers. The algorithm makes up part of the Oxford-RAL Aerosol and Cloud (ORAC) retrieval scheme (the other part of the algorithm performs cloud retrievals and is described in detail elsewhere [by Watts et al.] [37]).


Atmospheric Measurement Techniques Discussions | 2017

The Community Cloud retrieval for Climate (CC4CL). Part I: A framework applied to multiple satellite imaging sensors

Oliver Sus; Martin Stengel; Stefan Stapelberg; Gregory R. McGarragh; Caroline Poulsen; Adam C. Povey; Cornelia Schlundt; Gareth E. Thomas; Matthew W. Christensen; Simon Richard Proud; Matthias Jerg; R. G. Grainger; Rainer Hollmann

We present here the key features of the Community Cloud retrieval for CLimate (CC4CL) processing algorithm. We focus on the novel features of the framework: the optimal estimation approach in general, explicit uncertainty quantification through rigorous propagation of all known error sources into the final product, and the consistency of our long-term, multi-platform time series provided at various resolutions, from 0.5 to 0.02. By describing all key input data and processing steps, we aim to inform the user about important features of this new retrieval framework and its potential applicability to climate studies. We provide an overview of the retrieved and derived output variables. These are analysed for four, partly very challenging, scenes collocated with CALIOP (CloudAerosol lidar with Orthogonal Polarization) observations in the high latitudes and over the Gulf of Guinea–West Africa. The results show that CC4CL provides very realistic estimates of cloud top height and cover for optically thick clouds but, where optically thin clouds overlap, returns a height between the two layers. CC4CL is a unique, coherent, multiinstrument cloud property retrieval framework applicable to passive sensor data of several EO missions. Through its flexibility, CC4CL offers the opportunity for combining a variety of historic and current EO missions into one dataset, which, compared to single sensor retrievals, is improved in terms of accuracy and temporal sampling.


Bulletin of the American Meteorological Society | 2017

Toward Global Harmonization of Derived Cloud Products

Dong L. Wu; Bryan A. Baum; Yong-Sang Choi; Michael J. Foster; Karl-Göran Karlsson; Andrew K. Heidinger; Caroline Poulsen; Michael J. Pavolonis; Jerome Riedi; Robert Roebeling; Steven C. Sherwood; Anke Thoss; Philip Watts

Formerly known as the Cloud Retrieval Evaluation Workshop (CREW; see the list of acronyms used in this paper below) group (Roebeling et al. 2013, 2015), the International Cloud Working Group (ICWG) was created and endorsed during the 42nd Meeting of CGMS. The CGMS-ICWG provides a forum for space agencies to seek coherent progress in science and applications and also to act as a bridge between space agencies and the cloud remote sensing and applications community. The ICWG plans to serve as a forum to exchange and enhance knowledge on state-of-the-art cloud parameter retrievals algorithms, to stimulate support for training in the use of cloud parameters, and to encourage space agencies and the cloud remote sensing community to share knowledge. The ICWG plans to prepare recommendations to guide the direction of future research-for example, on observing severe weather events or on process studies-and to influence relevant programs of the WMO, WCRP, GCOS, and the space agencies.


Remote Sensing | 2018

Quantifying Uncertainty in Satellite-Retrieved Land Surface Temperature from Cloud Detection Errors

Claire E. Bulgin; Christopher J. Merchant; Darren Ghent; Lars Klüser; Thomas Popp; Caroline Poulsen; Larisa Sogacheva

Clouds remain one of the largest sources of uncertainty in remote sensing of surface temperature in the infrared, but this uncertainty has not generally been quantified. We present a new approach to do so, applied here to the Advanced Along-Track Scanning Radiometer (AATSR). We use an ensemble of cloud masks based on independent methodologies to investigate the magnitude of cloud detection uncertainties in area-average Land Surface Temperature (LST) retrieval. We find that at a grid resolution of 625 km 2 (commensurate with a 0.25 ∘ grid size at the tropics), cloud detection uncertainties are positively correlated with cloud-cover fraction in the cell and are larger during the day than at night. Daytime cloud detection uncertainties range between 2.5 K for clear-sky fractions of 10–20% and 1.03 K for clear-sky fractions of 90–100%. Corresponding night-time uncertainties are 1.6 K and 0.38 K, respectively. Cloud detection uncertainty shows a weaker positive correlation with the number of biomes present within a grid cell, used as a measure of heterogeneity in the background against which the cloud detection must operate (e.g., surface temperature, emissivity and reflectance). Uncertainty due to cloud detection errors is strongly dependent on the dominant land cover classification. We find cloud detection uncertainties of a magnitude of 1.95 K over permanent snow and ice, 1.2 K over open forest, 0.9–1 K over bare soils and 0.09 K over mosaic cropland, for a standardised clear-sky fraction of 74.2%. As the uncertainties arising from cloud detection errors are of a significant magnitude for many surface types and spatially heterogeneous where land classification varies rapidly, LST data producers are encouraged to quantify cloud-related uncertainties in gridded products.


RADIATION PROCESSES IN THE ATMOSPHERE AND OCEAN (IRS2012): Proceedings of the International Radiation Symposium (IRC/IAMAS) | 2013

GEWEX cloud assessment: A review

Claudia J. Stubenrauch; William B. Rossow; Stefan Kinne; Steve Ackerman; Gregory Cesana; Hélène Chepfer; Larry Di Girolamo; Brian Getzewich; Anthony Guignard; Andrew K. Heidinger; B. C. Maddux; Paul Menzel; Patrick Minnis; Cindy Pearl; Steven Platnick; Caroline Poulsen; Jerome Riedi; Andrew Sayer; Sunny Sun-Mack; Andi Walther; D. M. Winker; Shen Zeng; Guangyu Zhao

Clouds cover about 70% of the Earths surface and play a dominant role in the energy and water cycle of our planet. Only satellite observations provide a continuous survey of the state of the atmosphere over the entire globe and across the wide range of spatial and temporal scales that comprise weather and climate variability. Satellite cloud data records now exceed more than 25 years; however, climatologies compiled from different satellite datasets can exhibit systematic biases. Questions therefore arise as to the accuracy and limitations of the various sensors. The Global Energy and Water cycle Experiment (GEWEX) Cloud Assessment, initiated in 2005 by the GEWEX Radiation Panel, provides the first coordinated intercomparison of publicly available, global cloud products (gridded, monthly statistics) retrieved from measurements of multi-spectral imagers (some with multi-angle view and polarization capabilities), IR sounders and lidar. Cloud properties under study include cloud amount, cloud height (in ter...


Remote Sensing of Environment | 2015

Evaluation of seven European aerosol optical depth retrieval algorithms for climate analysis

G. de Leeuw; Thomas Holzer-Popp; Suzanne Bevan; William H. Davies; J. Descloitres; R. G. Grainger; Jan Griesfeller; A. Heckel; Stefan Kinne; Lars Klüser; Pekka Kolmonen; P. Litvinov; Dmytro Martynenko; Peter R. J. North; B. Ovigneur; N. Pascal; Caroline Poulsen; D. Ramon; Michael Schulz; Richard Siddans; L. Sogacheva; D. Tanré; G. E. Thomas; Timo H. Virtanen; W. von Hoyningen Huene; M. Vountas; S. Pinnock


Atmospheric Measurement Techniques | 2009

The GRAPE aerosol retrieval algorithm

G. E. Thomas; Caroline Poulsen; A. M. Sayer; S. H. Marsh; S. M. Dean; Elisa Carboni; Richard Siddans; R. G. Grainger; Bryan N. Lawrence


Atmospheric Measurement Techniques | 2013

Aerosol retrieval experiments in the ESA Aerosol_cci project

Thomas Holzer-Popp; G. de Leeuw; Jan Griesfeller; Dmytro Martynenko; Lars Klüser; Suzanne Bevan; William H. Davies; F. Ducos; Jean Luc Deuze; R G Graigner; A. Heckel; W von Hoyningen-Hüne; Pekka Kolmonen; Pavel Litvinov; Peter R. J. North; Caroline Poulsen; D. Ramon; Richard Siddans; L. Sogacheva; D. Tanré; G. E. Thomas; M. Vountas; J. Descloitres; Stefan Kinne; Michael Schulz; S. Pinnock

Collaboration


Dive into the Caroline Poulsen's collaboration.

Top Co-Authors

Avatar

Richard Siddans

Rutherford Appleton Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gareth E. Thomas

Rutherford Appleton Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge