Caroline Rivers
University of Bristol
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Caroline Rivers.
Journal of Biological Chemistry | 2008
Christopher J. Caunt; Stephen P. Armstrong; Caroline Rivers; Michael Norman; Craig A. McArdle
Although many stimuli activate extracellular signal-regulated kinases 1 and 2 (ERK1/2), the kinetics and compartmentalization of ERK1/2 signals are stimulus-dependent and dictate physiological consequences. ERKs can be inactivated by dual specificity phosphatases (DUSPs), notably the MAPK phosphatases (MKPs) and atypical DUSPs, that can both dephosphorylate and scaffold ERK1/2. Using a cell imaging model (based on knockdown of endogenous ERKs and add-back of wild-type or mutated ERK2-GFP reporters), we explored possible effects of DUSPs on responses to transient or sustained ERK2 activators (epidermal growth factor and phorbol 12,13-dibutyrate, respectively). For both stimuli, a D319N mutation (which impairs DUSP binding) increased ERK2 activity and reduced nuclear accumulation. These stimuli also increased mRNA levels for eight DUSPs. In a short inhibitory RNA screen, 12 of 16 DUSPs influenced ERK2 responses. These effects were evident among nuclear inducible MKP, cytoplasmic ERK MKP, JNK/p38 MKP, and atypical DUSP subtypes and, with the exception of the nuclear inducible MKPs, were paralleled by corresponding changes in Egr-1 luciferase activation. Simultaneous removal of all JNK/p38 MKPs or nuclear inducible MKPs revealed them as positive and negative regulators of ERK2 signaling, respectively. The effects of JNK/p38 MKP short inhibitory RNAs were not dependent on protein neosynthesis but were reversed in the presence of JNK and p38 kinase inhibitors, indicating DUSP-mediated cross-talk between MAPK pathways. Overall, our data reveal that a large number of DUSPs influence ERK2 signaling. Together with the known tissue-specific expression of DUSPs and the importance of ERK1/2 in cell regulation, our data support the potential value of DUSPs as targets for drug therapy.
Journal of Biological Chemistry | 2008
Christopher J. Caunt; Caroline Rivers; Becky L. Conway-Campbell; Michael Norman; Craig A. McArdle
Spatiotemporal aspects of ERK activation are stimulus-specific and dictate cellular consequences. They are dependent upon dual specificity phosphatases (DUSPs) that bind ERK via docking domains and can both inactivate and anchor ERK in cellular compartments. Using high throughput fluorescence microscopy in combination with a system where endogenous ERKs are removed and replaced with wild-type or mutated ERK2-green fluorescent protein (GFP), we show that ERK2 activation responses to epidermal growth factor (EGF) and protein kinase C (PKC) are transient and sustained, respectively. PKC-mediated ERK2 activation is associated with prolonged nuclear localization in the dephosphorylated form, whereas EGF-stimulated ERK2 activation mediates only transient nuclear accumulation. By using short inhibitory RNAs to nuclear inducible DUSP1, -2, or -4 (alone or in combination), we demonstrate that all three of these enzymes contribute to the dephosphorylation of PKC (but not EGF)-activated ERK2 in the nucleus but that they have opposing effects on localization. DUSP2 and -4 inactivate and anchor ERK2, whereas DUSP1 dephosphorylates ERK in the nucleus but allows its traffic back to the cytoplasm. Overexpression of DUSP1, -2, or -4 prevented ERK2 activation, but only DUSP2 and -4 caused ERK2-GFP nuclear accumulation or could be immunoprecipitated with ERK2. Furthermore, protein synthesis inhibition or replacement of wild-type ERK2-GFP with docking domain mutants selectively increased PKC effects on ERK activity and altered ERK2-GFP localization. These mutations also impaired the ability of ERK2-GFP to bind DUSP2 and -4. Together, our data reveal a novel, stimulus-specific, and phosphatase-specific mechanism of ERK2 regulation in the nucleus by DUSP1, -2, and -4.
PLOS ONE | 2011
Laura Matthews; James Johnson; Andrew Berry; Peter Trebble; Ann Cookson; Dave G. Spiller; Caroline Rivers; Michael Norman; Michael R. H. White; David Ray
The glucocorticoid receptor (GR) is a member of the nuclear hormone receptor superfamily of ligand-activated transcription factors. In contrast to many other nuclear receptors, GR is thought to be exclusively cytoplasmic in quiescent cells, and only translocate to the nucleus on ligand binding. We now demonstrate significant nuclear GR in the absence of ligand, which requires nuclear localisation signal 1 (NLS1). Live cell imaging reveals dramatic GR import into the nucleus through interphase and rapid exclusion of the GR from the nucleus at the onset of mitosis, which persists into early G1. This suggests that the heterogeneity in GR distribution is reflective of cell cycle phase. The impact of cell cycle–driven GR trafficking on a panel of glucocorticoid actions was profiled. In G2/M-enriched cells there was marked prolongation of glucocorticoid-induced ERK activation. This was accompanied by DNA template-specific, ligand-independent GR transactivation. Using chimeric and domain-deleted receptors we demonstrate that this transactivation effect is mediated by the AF1 transactivation domain. AF-1 harbours multiple phosphorylation sites, which are consensus sequences for kinases including CDKs, whose activity changes during the cell cycle. In G2/M there was clear ligand independent induction of GR phosphorylation on residues 203 and 211, both of which are phosphorylated after ligand activation. Ligand-independent transactivation required induction of phospho-S211GR but not S203GR, thereby directly linking cell cycle driven GR modification with altered GR function. Cell cycle phase therefore regulates GR localisation and post-translational modification which selectively impacts GR activity. This suggests that cell cycle phase is an important determinant in the cellular response to Gc, and that mitotic index contributes to tissue Gc sensitivity.
Endocrinology | 2009
Caroline Rivers; Andrea Flynn; Xiaoxiao Qian; Laura Matthews; Stafford L. Lightman; David Ray; Michael Norman
Alternative splicing events from tandem donor sites result in mRNA variants coding for additional amino acids in the DNA binding domain of both the glucocorticoid (GR) and mineralocorticoid (MR) receptors. We now show that expression of both splice variants is extensively conserved in mammalian species, providing strong evidence for their functional significance. An exception to the conservation of the MR tandem splice site (an A at position +5 of the MR+12 donor site in the mouse) was predicted to decrease U1 small nuclear RNA binding. In accord with this prediction, we were unable to detect the MR+12 variant in this species. The one exception to the conservation of the GR tandem splice site, an A at position +3 of the platypus GRgamma donor site that was predicted to enhance binding of U1 snRNA, was unexpectedly associated with decreased expression of the variant from the endogenous gene as well as a minigene. An intronic pyrimidine motif present in both GR and MR genes was found to be critical for usage of the downstream donor site, and overexpression of TIA1/TIAL1 RNA binding proteins, which are known to bind such motifs, led to a marked increase in the proportion of GRgamma and MR+12. These results provide striking evidence for conservation of a complex splicing mechanism that involves processes other than stochastic spliceosome binding and identify a mechanism that would allow regulation of variant expression.
BMC Biology | 2015
Caroline Rivers; Jalilah Idris; Helen L. Scott; Mark F. Rogers; Youn Bok Lee; Jess R Gaunt; Leonidas Phylactou; Tomaz Curk; Colin K Campbell; Jernej Ule; Michael Norman; James B. Uney
BackgroundSAFB1 is a RNA binding protein implicated in the regulation of multiple cellular processes such as the regulation of transcription, stress response, DNA repair and RNA processing. To gain further insight into SAFB1 function we used iCLIP and mapped its interaction with RNA on a genome wide level.ResultsiCLIP analysis found SAFB1 binding was enriched, specifically in exons, ncRNAs, 3’ and 5’ untranslated regions. SAFB1 was found to recognise a purine-rich GAAGA motif with the highest frequency and it is therefore likely to bind core AGA, GAA, or AAG motifs. Confirmatory RT-PCR experiments showed that the expression of coding and non-coding genes with SAFB1 cross-link sites was altered by SAFB1 knockdown. For example, we found that the isoform-specific expression of neural cell adhesion molecule (NCAM1) and ASTN2 was influenced by SAFB1 and that the processing of miR-19a from the miR-17-92 cluster was regulated by SAFB1. These data suggest SAFB1 may influence alternative splicing and, using an NCAM1 minigene, we showed that SAFB1 knockdown altered the expression of two of the three NCAM1 alternative spliced isoforms. However, when the AGA, GAA, and AAG motifs were mutated, SAFB1 knockdown no longer mediated a decrease in the NCAM1 9–10 alternative spliced form. To further investigate the association of SAFB1 with splicing we used exon array analysis and found SAFB1 knockdown mediated the statistically significant up- and downregulation of alternative exons. Further analysis using RNAmotifs to investigate the frequency of association between the motif pairs (AGA followed by AGA, GAA or AAG) and alternative spliced exons found there was a highly significant correlation with downregulated exons. Together, our data suggest SAFB1 will play an important physiological role in the central nervous system regulating synaptic function. We found that SAFB1 regulates dendritic spine density in hippocampal neurons and hence provide empirical evidence supporting this conclusion.ConclusionsiCLIP showed that SAFB1 has previously uncharacterised specific RNA binding properties that help coordinate the isoform-specific expression of coding and non-coding genes. These genes regulate splicing, axonal and synaptic function, and are associated with neuropsychiatric disease, suggesting that SAFB1 is an important regulator of key neuronal processes.
Bone | 2009
Benit S. Maru; Jonathan H Tobias; Caroline Rivers; Christopher J. Caunt; Michael Norman; Craig A. McArdle
SERMs act as ER agonists in bone despite their antagonistic properties in other tissues. As well as inhibiting bone remodelling, this effect may involve stimulation of osteoblast activity, in light of evidence from recent in vivo studies. However, progress in exploring this action has been hampered by a lack of accurate in vitro models. For example, ER antagonists are reported to stimulate reporter assays based on estrogen target genes in osteoblasts, contrary to their inhibitory effects in vivo. We examined whether evaluating global aspects of ER function provides a more accurate reflection of ER activation in osteoblasts, based on the use of morphological and/or transcriptional read-outs with green fluorescent protein (GFP)-receptor chimeras. Osteoblast-like (ROS and U2OS) and breast cancer (MCF7) cells were transfected with a human ERalpha-GFP fusion protein, and treated with ER agonists (17beta-estradiol, and dienestrol), antagonists (ICI 182,780 and ZK 164015) and SERMs (tamoxifen, raloxifene, 4-hydroxytamoxifen (4-HT) and hexestrol). We investigated cellular compartmentalisation of these constructs by fluorescence microscopy, nuclear mobility by fluorescence recovery after photobleaching (FRAP), and global activation of estrogenic transcription using a ERE-luc reporter. SERMs caused a modest increase in ERE-luc activity in osteoblast-like cells (but not in breast cells), and a reduction in nuclear mobility in breast (but not osteoblast-like) cells. These studies were then repeated using a GFP chimera where the human GR ligand binding domain (LBD) was replaced by the human ERalpha LBD (ERGR-GFP), combined with a GRE-luc reporter. Interestingly, SERMs increased both cytoplasmic to nuclear translocation of ERGR-GFP, and GRE-luc reporter activity, in osteoblast-like (but not breast) cells. Indeed, transcriptional responses to SERMs in osteoblast-like cells were considerably greater with the ERGR/GRE-luc than the ERalpha/ERE-luc system, 4-HT inducing 300 and 25% increases in reporter activity respectively. ER antagonists were entirely without effect. We conclude that evaluation of global estrogenic activity, as opposed to activation of a specific target gene, provides a more accurate read-out for osteoblast stimulation. In particular, ERGR-mediated GRE-luc activity provides a high signal response to estrogen agonists and SERMs, in a cell context dependent manner closely resembling that observed in vivo. Further studies utilising this system are justified to explore the mechanistic basis for estrogenic stimulation of osteoblast activity, and to identify newer SERMs capable of targeting this activity.
Endocrinology | 2017
John R. Pooley; Ben P. Flynn; Lars Grøntved; Songjoon Baek; Michael J. Guertin; Yvonne M. Kershaw; Matthew T. Birnie; Annie Pellatt; Caroline Rivers; R. Louis Schiltz; Gordon L. Hager; Stafford L. Lightman; Becky L. Conway-Campbell
Glucocorticoids regulate hippocampal function in part by modulating gene expression through the glucocorticoid receptor (GR). GR binding is highly cell type specific, directed to accessible chromatin regions established during tissue differentiation. Distinct classes of GR binding sites are dependent on the activity of additional signal-activated transcription factors that prime chromatin toward context-specific organization. We hypothesized a stress context dependency for GR binding in hippocampus as a consequence of rapidly induced stress mediators priming chromatin accessibility. Using chromatin immunoprecipitation sequencing to interrogate GR binding, we found no effect of restraint stress context on GR binding, although analysis of sequences underlying GR binding sites revealed mechanistic detail for hippocampal GR function. We note enrichment of GR binding sites proximal to genes linked to structural and organizational roles, an absence of major tethering partners for GRs, and little or no evidence for binding at negative glucocorticoid response elements. A basic helix–loop–helix motif closely resembling a NeuroD1 or Olig2 binding site was found underlying a subset of GR binding sites and is proposed as a candidate lineage-determining transcription factor directing hippocampal chromatin access for GRs. Of our GR binding sites, 54% additionally contained half-sites for nuclear factor (NF)-1 that we propose as a collaborative or general transcription factor involved in hippocampal GR function. Our findings imply a dose-dependent and context-independent action of GRs in the hippocampus. Alterations in the expression or activity of NF-1/basic helix–loop–helix factors may play an as yet undetermined role in glucocorticoid-related disease susceptibility and outcome by altering GR access to hippocampal binding sites.
Biochemical Journal | 2016
Michael Norman; Caroline Rivers; Youn-Bok Lee; Jalilah Idris; James B. Uney
RNA-binding proteins play a central role in cellular metabolism by orchestrating the complex interactions of coding, structural and regulatory RNA species. The SAFB (scaffold attachment factor B) proteins (SAFB1, SAFB2 and SAFB-like transcriptional modulator, SLTM), which are highly conserved evolutionarily, were first identified on the basis of their ability to bind scaffold attachment region DNA elements, but attention has subsequently shifted to their RNA-binding and protein-protein interactions. Initial studies identified the involvement of these proteins in the cellular stress response and other aspects of gene regulation. More recently, the multifunctional capabilities of SAFB proteins have shown that they play crucial roles in DNA repair, processing of mRNA and regulatory RNA, as well as in interaction with chromatin-modifying complexes. With the advent of new techniques for identifying RNA-binding sites, enumeration of individual RNA targets has now begun. This review aims to summarise what is currently known about the functions of SAFB proteins.
The Journal of Clinical Endocrinology and Metabolism | 1999
Caroline Rivers; Andrew Levy; Jerry Hancock; Stafford L. Lightman; Michael Norman
Human Molecular Genetics | 2013
Marianna Szemes; Anthony R. Dallosso; Zsombor Melegh; Tom J Curry; Yifan Li; Caroline Rivers; James B. Uney; Ann-Sophie Magdefrau; Karolin Schwiderski; Ji Park; Keith W. Brown; Jayasha Shandilya; Stefan G. E. Roberts; Karim Malik