Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Caroline Roy is active.

Publication


Featured researches published by Caroline Roy.


Early Human Development | 2013

Maternal interactive behaviour as a predictor of preschoolers' attachment representations among full term and premature samples

Raphaële Miljkovitch; Greg Moran; Caroline Roy; Lyne Jaunin; Margarita Forcada-Guex; Blaise Pierrehumbert; Carole Muller-Nix; Ayala Borghini

BACKGROUND Associations between maternal sensitivity and child attachment have been established in many samples, but the strength of the association varies across populations. The sensitivity-attachment link has never been examined at the level of representations nor among premature samples. OBJECTIVE The present study is aimed at exploring associations between maternal interactive behaviour and childrens attachment representations in a population of preterm and full-term infants. METHOD Maternal interactive behaviour was assessed at 6 and 18 months (Ainsworth Sensitivity Scale & Care Index) and childrens attachment representations were measured at 42 months (Attachment Story Completion Task) in a sample of preterm (N=48) and full-term (N=23) infants. RESULTS Maternal unresponsiveness at 6 months and sensitivity at 18 months explained 54% of the variance of disorganized attachment representations in the full-term group but was not significantly related to attachment patterns in the preterm group. CONCLUSION These results corroborate previous work on the causes of disorganized attachment and also point to the need to consider the development of attachment differently for children evolving in specific developmental contexts. They especially stress the importance of distinguishing between risk factors associated with the mother as opposed to the child.


Journal of Pharmacology and Experimental Therapeutics | 2011

Design of Fluorescent Bradykinin Analogs: Application to Imaging of B2 Receptor-Mediated Agonist Endocytosis and Trafficking and Angiotensin-Converting Enzyme

Lajos Gera; Marie-Thérèse Bawolak; Caroline Roy; Robert Lodge; François Marceau

The known structure-activity relationship and docking models for peptide ligands of the bradykinin B2 receptor indicate a certain tolerance to N-terminal extension. We took advantage of this by generating two fluorescent bradykinin analogs containing 5(6)-carboxyfluorescein (CF) optionally used with the ε-aminocaproyl spacer condensed at the N terminus of the agonist. Pharmacological studies indicated that CF-bradykinin was virtually inactive as a B2 receptor ligand and agonist, whereas CF-ε-aminocaproyl-bradykinin (CF-εACA-BK) was 400- to 1000-fold less potent than bradykinin (competition of [3H]bradykinin binding to B2 receptors, contractility of the human isolated umbilical vein). Nevertheless, CF-εACA-BK (5 μM) was taken up by human embryonic kidney 293a cells expressing recombinant B2 receptors, but not by those cotreated with an antagonist or expressing a truncated receptor that is pharmacologically intact but not phosphorylable. A higher-affinity CF-conjugated peptide, the antagonist CF-εACA-d-Arg-[Hyp3,Igl5,d-Igl7,Oic8]-bradykinin (B-10380), labeled both intact and truncated receptor forms at the cell surface. The fluorescent agonist CF-εACA-BK was found in vesicles positive for β-arrestin1, Rab5, and Rab7, then apparently degraded as a function of time because the fluorescence was transferred from the vesicles to the cytosol in a vesicular-ATPase-dependent process (3 h). The ectopeptidase angiotensin-converting enzyme (ACE) is a major kininase. The binding affinity of CF-εACA-BK for this carboxydipeptidase is identical to that of bradykinin ([3H]enalaprilat displacement assay). Recombinant ACE is essentially a plasma membrane protein in CF-εACA-BK imaging of intact cells. Micromolar CF-εACA-BK is a probe for the two major physiological targets of bradykinin, the B2 receptor and ACE. As an agonist, it is subjected to β-arrestin-mediated endocytosis, trafficking, and subsequent ligand degradation.


Pharmacological Research | 2012

Prolonged signalling and trafficking of the bradykinin B2 receptor stimulated with the amphibian peptide maximakinin: Insight into the endosomal inactivation of kinins

Marie-Thérèse Bawolak; Caroline Roy; Lajos Gera; François Marceau

Maximakinin, a 19-residue peptide from the amphibian Bombina maxima, incorporates the full sequence of bradykinin (BK) at its C-terminus with a hydrophilic 10-residue N-terminal extension. As a putative venom component, it may stimulate BK B(2) receptors (B(2)Rs) in a distinct manner relative to the fragile mammalian agonist BK. Maximakinin affinity for B(2)Rs and angiotensin converting enzyme (ACE) and its pharmacological profile have been compared to those of BK. Maximakinin is an agonist of the human and rabbit B(2)R with a 8-12 fold lesser potency, but a prolonged duration of action relative to BK (ERK MAP kinase activation, c-Fos induction in HEK 293 cells). Maximakinin had a moderately inferior affinity (∼6-fold vs. BK) for recombinant ACE based on [(3)H]enalaprilat binding displacement. Unlike BK, maximakinin induced the internalization of the fusion protein B(2)R-green fluorescent protein (GFP) and the downregulation of this construction over a 12-h stimulation period, reproducing the effect of inactivation-resistant B(2)R agonists. Alternate homologues of BK extended at the N-terminus showed intermediate behaviours between BK and maximakinin in the B(2)R-GFP downregulation assay. The recycling of B(2)R-GFP at the cell surface after a 3-h BK treatment was notably inhibited by cotreatment with E-64 or bafilomycin A1, supporting that an endosomal cysteine protease degrades kinins in a process that determines the cycling and fate of the B(2)R. Maximakinin is the first known natural kinin sequence that elicits a prolonged cellular signalling, thus suggesting a possible basis for a venomous action and a naturally selected one for the design of B(2)R-transported biotechnological cargoes.


Peptides | 2012

N-terminal extended conjugates of the agonists and antagonists of both bradykinin receptor subtypes: Structure–activity relationship, cell imaging using ligands conjugated with fluorophores and prospect for functionally active cargoes

Lajos Gera; Caroline Roy; Marie-Thérèse Bawolak; Xavier Charest-Morin; François Marceau

Peptide agonists and antagonists of both bradykinin (BK) B(1) and B(2) receptors (B(1)R, B(2)R) are known to tolerate to a certain level N-terminal sequence extensions. Using this strategy, we produced and characterized the full set of fluorescent ligands by extending both agonists and antagonist peptides at both receptor subtypes with 5(6)-carboxyfluorescein (CF) and the ε-aminocaproyl (ε-ACA) optional spacer. Alternatively, kinin receptor ligands were extended with another carboxylic acid cargo (chlorambucil, biotinyl, pentafluorocinnamoyl, AlexaFluor-350 (AF350), ferrocenoyl, cetirizine) or with fluorescein isothiocyanate. N-terminal extension always reduced receptor affinity, more importantly for bulkier substituents and more so for the agonist version compared to the antagonist. This loss was generally alleviated by the presence of the spacer and modulated by the species of origin for the receptor. We report and review the pharmacological properties of these N-terminally extended peptides and the use of fluorophore-conjugated ligands in imaging of cell receptors and of angiotensin converting enzyme (ACE) in intact cells. Antagonists (B(1)R: B-10376: CF-ε-ACA-Lys-Lys-[Hyp(3), CpG(5), D-Tic(7), CpG(8)]des-Arg(9)-BK; B(2)R: B-10380: CF-ε-ACA-D-Arg-[Hyp(3), Igl(5), D-Igl(7), Oic(8)]-BK and fluorescein-5-thiocarbamoyl (FTC)-B-9430) label the plasma membrane of cells expressing the cognate receptors. The B(2)R agonists CF-ε-ACA-BK, AF350-ε-ACA-BK and FTC-B-9972 are found in endosomes and model the endosomal degradation of BK in a complementary manner. The uneven surface fluorescence associated to the B(1)R agonist B-10378 (CF-ε-ACA-Lys-des-Arg(9)-BK) is compatible with a particular form of agonist-induced receptor translocation. CF-ε-ACA-BK binds to the carboxydipeptidase ACE with an affinity identical to that of BK. Metal- or drug-containing cargoes further show the prospect of ligands that confer special signaling to kinin receptors.


Pharmacological Research | 2011

Met-Lys-bradykinin-Ser-Ser, a peptide produced by the neutrophil from kininogen, is metabolically activated by angiotensin converting enzyme in vascular tissue

Lajos Gera; Caroline Roy; Marie-Thérèse Bawolak; Johanne Bouthillier; Albert Adam; François Marceau

Bradykinin (BK) is a vasoactive nonapeptide cleaved from circulating kininogens and that is degraded by angiotensin converting enzyme (ACE). It has been reported that the PR3 protease from human neutrophil releases an alternate peptide of 13 amino acids, Met-Lys-BK-Ser-Ser, from high molecular weight kininogen. We have studied vascular actions of this kinin. Its affinity for recombinant B₁ and B₂ receptors is very low, as assessed by the binding competition of [³H]Lys-des-Arg⁹-BK and [³H]BK, respectively, but Met-Lys-BK-Ser-Ser effectively displaced a fraction of [³H]enalaprilat binding to recombinant ACE. Mutant recombinant ACE constructions revealed that affinity gap between BK and Met-Lys-BK-Ser-Ser is larger for the N-terminal catalytic site than for the C-terminal one, based on competition for the substrate Abz-Phe-Arg-Lys(Dnp)-Pro-OH in an enzymatic assay. Met-Lys-BK-Ser-Ser is a low potency stimulant of the rabbit aorta (bioassay for B₁ receptors), but the human isolated umbilical vein, a contractile bioassay for the B₂ receptors, responded to Met-Lys-BK-Ser-Ser more than expected from the radioligand binding assay, this agonist being ∼30-fold less potent than BK in the vein. Venous tissue treatment with the ACE inhibitor enalaprilat reduced the apparent potency of Met-Lys-BK-Ser-Ser by 15-fold, while not affecting that of BK. In the rabbit isolated jugular vein, Met-Lys-BK-Ser-Ser is nearly as potent as BK as a contractile stimulant of endogenous B₂ receptors (EC₅₀ values of 16.3 and 10.5 nM, respectively), but enalaprilat reduced the potency of Met-Lys-BK-Ser-Ser 13-fold while increasing that of BK 5.3-fold. In vascular tissue, ACE assumes a paradoxical activating role for Met-Lys-BK-Ser-Ser.


Pharmacological Research | 2013

Inhibitory effects of cytoskeleton disrupting drugs and GDP-locked Rab mutants on bradykinin B2 receptor cycling

Xavier Charest-Morin; Sébastien Fortin; Robert Lodge; Caroline Roy; Lajos Gera; René C.-Gaudreault; François Marceau

The bradykinin (BK) B₂ receptor (B₂R) is G protein coupled and phosphorylated upon agonist stimulation; its endocytosis and recycling are documented. We assessed the effect of drugs that affect the cytoskeleton on B2R cycling. These drugs were targeted to tubulin (paclitaxel, or the novel combretastatin A-4 mimetic 3,4,5-trimethoxyphenyl-4-(2-oxoimidazolidin-1-yl)benzenesulfonate [IMZ-602]) and actin (cytochalasin D). Tubulin ligands did not alter agonist-induced receptor endocytosis, as shown using antibodies reactive with myc-tagged B₂Rs (microscopy, cytofluorometry), but rather reduced the progression of the ligand-receptor-β-arrestin complex from the cell periphery to the interior. The 3 fluorescent probes of this complex (B2R-green fluorescent protein [B2R-GFP], the fluorescent agonist fluorescein-5-thiocarbamoyl-D-Arg-[Hyp³, Igl⁵, Oic⁷, Igl⁸]-BK and β-arrestin2-GFP) were condensed in punctuate structures that remained close to the cell surface in the presence of IMZ-602. Cytochalasin D selectively inhibited the recycling of endocytosed B₂R-GFP (B₂R-GFP imaging, [³H]BK binding). Dominant negative (GDP-locked)-Rab5 and -Rab11 reproduced the effects of inhibitors of tubulin and actin, respectively, on the cycling of B₂R-GFP. GDP-locked-Rab4 also inhibited B₂R-GFP recycling to the cell surface. Consistent with the displacement of cargo along specific cytoskeletal elements, Rab5-associated progression of the endocytosed BK B₂R follows microtubules toward their (-) end, while its recycling progresses along actin fibers to the cell surface. However, tubulin ligands do not suppress the tested desensitization or resensitization mechanisms of the B₂R.


Frontiers in Pharmacology | 2014

Pharmacological evidence of bradykinin regeneration from extended sequences that behave as peptidase–activated B2 receptor agonists

Xavier Charest-Morin; Caroline Roy; Émile-Jacques Fortin; Johanne Bouthillier; François Marceau

While bradykinin (BK) is known to be degraded by angiotensin converting enzyme (ACE), we have recently discovered that Met-Lys-BK-Ser-Ser is paradoxically activated by ACE. We designed and evaluated additional “prodrug” peptides extended around the BK sequence as potential ligands that could be locally activated by vascular or blood plasma peptidases. BK regeneration was estimated using the contractility of the human umbilical vein as model of vascular functions mediated by endogenous B2 receptors (B2Rs) and the endocytosis of the fusion protein B2R-green fluorescent protein (B2R-GFP) expressed in Human Embryonic Kidney 293 cells. Of three BK sequences extended by a C-terminal dipeptide, BK-His-Leu had the most desirable profile, exhibiting little direct affinity for the receptor but a significant one for ACE (as shown by competition of [3H]BK binding to B2R-GFP or of [3H]enalaprilat to recombinant ACE, respectively). The potency of the contractile effect of this analog on the vein was reduced 18-fold by the ACE inhibitor enalaprilat, pharmacologically evidencing BK regeneration in situ. BK-Arg, a potential substrate of arginine carboxypeptidases, had a low affinity for B2Rs and its potency as a contractile agent was reduced 15-fold by tissue treatment with an inhibitor of these enzymes, Plummer’s inhibitor. B2R-GFP internalization in response to 100 nM of the extended peptides recapitulated these findings, as enalaprilat selectively inhibited the effect of BK-His-Leu and Plummer’s inhibitor, that of BK-Arg. The two peptidase inhibitors did not affect BK-induced effects in either assay. The novel C-terminally extended BKs had no or very little affinity for the kinin B1 receptor (competition of [3H]Lys-des-Arg9-BK binding). The feasibility of peptidase-activated B2R agonists is illustrated by C-terminal extensions of the BK sequence.


Methods in Enzymology | 2014

Assessment of cation trapping by cellular acidic compartments

François Marceau; Caroline Roy; Johanne Bouthillier

All nucleated cells, from yeast to animal cells, concentrate cationic chemicals (weak bases with a pKa~8-10) into acidic cell compartments (low retro-diffusion under a protonated form at low pH=ion trapping). The proton pump vacuolar (V)-ATPase is the driving force of this pseudotransport that concerns acidic organelles (mainly late endosomes and lysosomes). The latter rapidly become swollen (osmotic vacuolization) and macroautophagic. Cation concentration in cells is not proved to involve membrane transporters, but is prevented or reversed by inhibitors of V-ATPase, such as bafilomycin A1. Lipophilicity is a major determinant of the apparent affinity of this pseudotransport because simple diffusion of the uncharged form supports it. Quinacrine is a formerly used antiparasitic drug that is intensely fluorescent, lipophilic, and a tertiary amine. The drug, at micromolar concentrations, is proposed as a superior probe for assessing cation trapping by cellular acidic compartments, being readily quantified using fluorometry in cell extracts and analyzed using microscopy and cytofluorometry (fluorescence settings for fluorescein being applicable). Further, cells respond to micromolar levels of quinacrine by autophagic accumulation (e.g., accumulation of the activated macroautophagic effector LC3 II, immunoblots), an objective and universal response to sequestered amines.


International Immunopharmacology | 2013

Vasopeptidase-activated latent ligands of the histamine receptor-1.

Lajos Gera; Caroline Roy; Xavier Charest-Morin; François Marceau

Whether peptidases present in vascular cells can activate prodrugs active on vascular cells has been tested with 2 potential latent ligands of the histamine H1 receptor (H1R). First, a peptide consisting of the antihistamine cetirizine (CTZ) condensed at the N-terminus of ε-aminocaproyl-bradykinin (εACA-BK) was evaluated for an antihistamine activity that could be revealed by degradation of the peptide part of the molecule. CTZ-εACA-BK had a submicromolar affinity for the BK B2 receptor (B2R; IC50 of 590 nM, [(3)H]BK binding competition), but a non-negligible affinity for the human H1 receptor (H1R; IC50 of 11 μM for [(3)H]pyrilamine binding). In the human isolated umbilical vein, a system where both endogenous B2R and H1R mediate strong contractions, CTZ-εACA-BK exerted mild antagonist effects on histamine-induced contraction that were not modified by omapatrilat or by a B2R antagonist that prevents endocytosis of the BK conjugate. Cells expressing recombinant ACE or B2R incubated with CTZ-εACA-BK did not release a competitor of [(3)H]pyrilamine binding to H1Rs. Thus, there is no evidence that CTZ-εACA-BK can release free cetirizine in biological environments. The second prodrug was a blocked agonist, L-alanyl-histamine, potentially activated by aminopeptidase N (APN). This compound did not compete for [(3)H]pyrilamine binding to H1Rs. The human umbilical vein contractility assay responded to L-alanyl-histamine (EC50 54.7 μM), but the APN inhibitor amastatin massively (17-fold) reduced its apparent potency. Amastatin did not influence the potency of histamine as a contractile agent. One of the 2 tested latent H1R ligands, L-alanyl-histamine, supported the feasibility of pro-drug activation by vascular ectopeptidases.


Biological Chemistry | 2013

Bifunctional epitope-agonist ligands of the bradykinin B2 receptor

Lajos Gera; Caroline Roy; François Marceau

Abstract Two bradykinin (BK) B2 receptor agonists N-terminally extended with the myc epitope were synthesized and evaluated: myc-KPG-BK and myc-KGP-B-9972. The latter was modeled on the inactivation-resistant agonist B-9972 (D-Arg0, Hyp3, Igl5, Oic7, Igl8-BK) and is also resistant to endosomal inactivation. Despite a large loss of affinity relative to the parent peptide, the tagged analogs are conventional agonists in the umbilical vein contractility assay and compete for [3H]BK binding at the rabbit B2 receptor. Endocytosed myc-KGP-B-9972 most effectively carried AlexaFluor-488-conjugated anti-myc monoclonal antibodies into intact cells expressing the B2 receptor. Results support the prospects of functionally-active cargoes entering cells in a pharmacologically controlled manner.

Collaboration


Dive into the Caroline Roy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lajos Gera

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge