Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Caroline Sablayrolles is active.

Publication


Featured researches published by Caroline Sablayrolles.


Gcb Bioenergy | 2009

Life cycle assessment of biofuels from Jatropha curcas in West Africa: a field study

Robert Ndong; Mireille Montréjaud-Vignoles; Olivier Saint Girons; Benoit Gabrielle; Roland Pirot; Marjorie Domergue; Caroline Sablayrolles

In recent years, liquid biofuels for transport have benefited from significant political support due to their potential role in curbing climate change and reducing our dependence on fossil fuels. They may also participate to rural development by providing new markets for agricultural production. However, the growth of energy crops has raised concerns due to their high consumption of conventional fuels, fertilizers and pesticides, their impacts on ecosystems and their competition for arable land with food crops. Low‐input species such as Jatropha curcas, a perennial, inedible crop well adapted to semiarid regions, has received much interest as a new alternative for biofuel production, minimizing adverse effects on the environment and food supply. Here, we used life‐cycle assessment to quantify the benefits of J. curcas biofuel production in West Africa in terms of greenhouse gas emissions and fossil energy use, compared with fossil diesel fuel and other biofuels. Biodiesel from J. curcas has a much higher performance than current biofuels, relative to oil‐derived diesel fuels. Under West Africa conditions, J. curcas biodiesel allows a 72% saving in greenhouse gas emissions compared with conventional diesel fuel, and its energy yield (the ratio of biodiesel energy output to fossil energy input) is 4.7. J. curcas production studied is eco‐compatible for the impacts under consideration and fits into the context of sustainable development.


International Journal of Life Cycle Assessment | 2012

Life cycle assessment (LCA) applied to the process industry: a review

Leslie Jacquemin; Pierre Yves Pontalier; Caroline Sablayrolles

PurposeLife cycle assessment (LCA) methodology is a well-established analytical method to quantify environmental impacts, which has been mainly applied to products. However, recent literature would suggest that it has also the potential as an analysis and design tool for processes, and stresses that one of the biggest challenges of this decade in the field of process systems engineering (PSE) is the development of tools for environmental considerations.MethodThis article attempts to give an overview of the integration of LCA methodology in the context of industrial ecology, and focuses on the use of this methodology for environmental considerations concerning process design and optimization.ResultsThe review identifies that LCA is often used as a multi-objective optimization of processes: practitioners use LCA to obtain the inventory and inject the results into the optimization model. It also shows that most of the LCA studies undertaken on process analysis consider the unit processes as black boxes and build the inventory analysis on fixed operating conditions.ConclusionsThe article highlights the interest to better assimilate PSE tools with LCA methodology, in order to produce a more detailed analysis. This will allow optimizing the influence of process operating conditions on environmental impacts and including detailed environmental results into process industry.


Journal of Industrial Ecology | 2010

Life Cycle Assessment of Biosolids Land Application and Evaluation of the Factors Impacting Human Toxicity Through Plant Uptake

Caroline Sablayrolles; Benoît Gabrielle; Mireille Montréjaud-Vignoles

Due to increasing environmental concerns in the wastewater treatment sector, the environmental impacts of organic waste disposal procedures require careful evaluation. However, the impacts related to the return of organic matter to agricultural soils are difficult to assess. The goals of this study are to assess the environmental impacts of land application of two types of biosolids (dried and composted, respectively) from the same wastewater treatment plant in France, and to improve the quantification of human toxicity. A life cycle assessment (LCA) was carried out on a case study based on validated data from an actual wastewater treatment plant. Numerous impacts were included in this analysis, but a particular emphasis was laid on human toxicity via plant ingestion. For six out of the eight impact categories included in the analysis, the dried biosolids system was more harmful to the environment than the composting route, especially regarding the consumption of primary energy. Only human toxicity via water, soil, and air compartments and ozone depletion impacts were higher with the composted biosolids.


Journal of Chromatography A | 2013

Optimization of pressurized liquid extraction using a multivariate chemometric approach for the determination of anticancer drugs in sludge by ultra high performance liquid chromatography–tandem mass spectrometry

Jordan Seira; Catherine Claparols; Claire Joannis-Cassan; Claire Albasi; Mireille Montréjaud-Vignoles; Caroline Sablayrolles

The present paper describes an analytical method for the determination of 2 widely administered anticancer drugs, ifosfamide and cyclophosphamide, contained in sewage sludge. The method relies on the extraction from the solid matrix by pressurized liquid extraction, sample purification by solid-phase extraction and analysis by ultra high performance liquid chromatography coupled with tandem mass spectrometry. The different parameters affecting the extraction efficiency were optimized using an experimental design. Solvent nature was the most decisive factor for the extraction but interactions between some parameters also appeared very influent. The method was applied to seven different types of sludge for validation. The performances of the analytical method displayed high variability between sludges with limits of detection spanning more than one order of magnitude and confirming the relevance of multi-sample validation. Matrix effect has been determined as the most limiting analytical step for quantification with different extent depending on analyte and sludge nature. For each analyte, the use of deuterated standard spiked at the very beginning ensured the complete compensation of losses regardless of the sample nature. The suitability of the method between freshly spiked and aged samples has also been verified. The optimized method was applied to different sludge samples to determine the environmental levels of anticancer drugs. The compounds were detected in some samples reaching 42.5μg/kgDM in ifosfamide for the most contaminated sample.


Science of The Total Environment | 2013

Impact of dry weather discharges on annual pollution from a separate storm sewer in Toulouse, France

Stephanie Deffontis; Audrey Breton; Claire Vialle; Mireille Montréjaud-Vignoles; Christian Vignoles; Caroline Sablayrolles

The city of Toulouse with its separate sewer system is ideal for studying stormwater. However, during dry weather, the storm sewer also discharges water into the environment, and it is the impact of these discharges on annual pollution from storm sewer that is the object of this study. Samples have been taken from the outlets of two storm drains located in heavily and moderately urbanized areas. Sampling has been undertaken during wet weather and during dry weather between January 2010 and February 2011. Three dry weather and two wet weather samples have been taken every three months and from each outlet. The overall pollution parameters have been analyzed (chemical oxygen demand, biological oxygen demand, total nitrogen, ammonium, nitrate, total phosphorus, suspended solid matter, volatile suspended matter, pH, conductivity, turbidity). Characterization has been completed by analysis of trace organic compounds: polycyclic aromatic hydrocarbons, total hydrocarbons, methyl tert-butyl ether, diethylhexylphthalate, nonylphenols, hormones (estradiol, ethinylestradiol). For certain parameters, the results obtained did not conform to legislative requirements concerning discharge into the natural environment. Correlations between these parameters have been studied, and identified between several of them using principal component analysis. The most important correlation observed was between conductivity and concentration in total phosphorus for one of the outlet. Results showed that dry weather had an impact on annual pollution load from separate storm sewer and that level of urbanization was also a factor. The effect of season has been studied but no significant impact was found.


International Journal of Analytical Chemistry | 2009

Trace determination of linear alkylbenzene sulfonates: application in artificially polluted soil-carrots system.

Caroline Sablayrolles; Mireille Montréjaud-Vignoles; Jérôme Silvestre; Michel Treilhou

Surfactants are widely used in household and industrial products. The risk of incorporation of linear alkylbenzene sulfonates (LAS) from biosolids, wastewater, and fertilizers land application to the food chain is being assessed at present by the European Union. In the present work, a complete analytical method for LAS trace determination has been developed and successfully applied to LAS (C10–C13) uptake in carrot plants used as model. These carrots were grown in soil with the trace organics compounds added directly into the plant containers in pure substances form. LAS trace determination (μg kg−1 dry matter) in carrots samples was achieved by Soxtec apparatus and high-performance liquid chromatography-fluorescence detection. The methodology developed provides LAS determination at low detection limits (5 μg kg−1 dry matter) for carrot sample (2 g dry matter) with good recoveries rate (>90%). Transfer of LAS has been followed into the various parts of the carrot plant. LAS are generally found in the carrot leaves and percentage transfer remains very low (0.02%).


Journal of Environmental Management | 2014

Halomonas desiderata as a bacterial model to predict the possible biological nitrate reduction in concrete cells of nuclear waste disposals

Marjorie Alquier; Caroline Kassim; Alexandra Bertron; Caroline Sablayrolles; Yan Rafrafi; Achim Albrecht; Benjamin Erable

After closure of a waste disposal cell in a repository for radioactive waste, resaturation is likely to cause the release of soluble species contained in cement and bituminous matrices, such as ionic species (nitrates, sulfates, calcium and alkaline ions, etc.), organic matter (mainly organic acids), or gases (from steel containers and reinforced concrete structures as well as from radiolysis within the waste packages). However, in the presence of nitrates in the near-field of waste, the waste cell can initiate oxidative conditions leading to enhanced mobility of redox-sensitive radionuclides (RN). In biotic conditions and in the presence of organic matter and/or hydrogen as electron donors, nitrates may be microbiologically reduced, allowing a return to reducing conditions that promote the safety of storage. Our work aims to analyze the possible microbial reactivity of nitrates at the bitumen - concrete interface in conditions as close as possible to radioactive waste storage conditions in order (i) to evaluate the nitrate reaction kinetics; (ii) to identify the by-products (NO2(-), NH4(+), N2, N2O, etc.); and (iii) to discriminate between the roles of planktonic bacteria and those adhering as a biofilm structure in the denitrifying activity. Leaching experiments on solid matrices (bitumen and cement pastes) were first implemented to define the physicochemical conditions that microorganisms are likely to meet at the bitumen-concrete interface, e.g. highly alkaline pH conditions (10 < pH < 11) imposed by the cement matrix. The screening of a range of anaerobic denitrifying bacterial strains led us to select Halomonas desiderata as a model bacterium capable of catalyzing the reaction of nitrate reduction in these particular conditions of pH. The denitrifying activity of H. desiderata was quantified in a batch bioreactor in the presence of solid matrices and/or leachate from bitumen and cement matrices. Denitrification was relatively fast in the presence of cement matrix (<100 h) and 2-3 times slower in the presence of bituminous matrix (pH 9.7). The maximal rate of denitrification was approximately 0.063 mM h(-1) and some traces of nitrite were detected for a few hours (<2%). Overall, the presence of solid cement promoted the kinetics of denitrification. The inspection of the solid surfaces at the end of the experiment revealed the presence of a biofilm of H. desiderata on the cement paste surface. These attached bacteria showed a comparable denitrifying activity to planktonic bacterial culture. However, no colonization of bitumen was observed either by SEM or by epifluorescence microscopy.


Water Science and Technology | 2010

Impact of carwash discharge on stormwater quality (Toulouse, France)

Caroline Sablayrolles; Claire Vialle; Christian Vignoles; Mireille Montréjaud-Vignoles

The contribution of discharge from carwashes to pollutant levels in stormwater was evaluated. Five carwashes and two outlets in the city of Toulouse (France) were selected. Water samples were collected from December 2006 to December 2007. Concentrations and loadings of classical water quality parameters (conductivity, pH, turbidity, chemical oxygen demand, nitrogen, phosphorus, ammonium, nitrate, suspended solid and volatile suspended solid) and five groups of organic compounds (polycyclic aromatic hydrocarbons, polychlorinated biphenyls, lauryl alkyl benzene sulphonates, methyl tert-butyl ether and total hydrocarbons) were determined. The results suggest that the wastewater derived from carwashes was negligible compared to the volume and flow rates within the stormwater network. However, high concentrations of polycyclic aromatic hydrocarbons, phosphorus and lauryl alkyl benzene sulphonates in liquid waste from carwashes, and the impact of these pollutants on stormwater quality could not be neglected.


Journal of Environmental Management | 2013

Pesticides in roof runoff: Study of a rural site and a suburban site

Claire Vialle; Caroline Sablayrolles; J. Silvestre; L. Monier; S. Jacob; M.-C. Huau; Mireille Montréjaud-Vignoles

The quality of stored roof runoff in terms of pesticide pollution was assessed over a one-year period. Two tanks, located at a rural and suburban site, respectively, were sampled monthly. The two studied collection surface were respectively a tile slope roof and a bituminous flat roof. Four hundred and five compounds and metabolites were screened using liquid and gas chromatography coupled with various detection systems. Principal Component Analysis was applied to the data sets to elucidate patterns. At the rural site, two groups of compounds associated with two different types of agriculture, vineyard and crops, were distinguished. The most frequently detected compound was glyphosate (83%) which is the most commonly used herbicide in French vineyards. At the suburban site, quantified compounds were linked to agriculture rather than urban practices. In addition, all samples were contaminated with mecoprop which is a roof-protecting agent. Its presence was attributed to the nature of roofing material used for rainwater collection. For both sites, the highest number and concentrations of compounds and metabolites were recorded at the end of spring and through summer. These results are consistent with treatment periods and higher temperatures.


Computers and Electronics in Agriculture | 2016

A decision support system for eco-efficient biorefinery process comparison using a semantic approach

Charlotte Lousteau-Cazalet; Abdellatif Barakat; Jean Pierre Belaud; Patrice Buche; Guillaume Busset; Brigitte Charnomordic; Stéphane Dervaux; Sébastien Destercke; Juliette Dibie; Caroline Sablayrolles; Claire Vialle

We define a decision support system for eco-efficient biorefinery process comparison.Uncertainty is managed all along the pipeline for eco-design indicator computations.Data extraction from textual documents is guided by a Termino-ontological resource.Flexible structured database querying is guided by a Termino-ontological resource. Enzymatic hydrolysis of the main components of lignocellulosic biomass is one of the promising methods to further upgrading it into biofuels. Biomass pre-treatment is an essential step in order to reduce cellulose crystallinity, increase surface and porosity and separate the major constituents of biomass. Scientific literature in this domain is increasing fast and could be a valuable source of data. As these abundant scientific data are mostly in textual format and heterogeneously structured, using them to compute biomass pre-treatment efficiency is not straightforward. This paper presents the implementation of a Decision Support System (DSS) based on an original pipeline coupling knowledge engineering (KE) based on semantic web technologies, soft computing techniques and environmental factor computation. The DSS allows using data found in the literature to assess environmental sustainability of biorefinery systems. The pipeline permits to: (1) structure and integrate relevant experimental data, (2) assess data source reliability, (3) compute and visualize green indicators taking into account data imprecision and source reliability. This pipeline has been made possible thanks to innovative researches in the coupling of ontologies, uncertainty management and propagation. In this first version, data acquisition is done by experts and facilitated by a termino-ontological resource. Data source reliability assessment is based on domain knowledge and done by experts. The operational prototype has been used by field experts on a realistic use case (rice straw). The obtained results have validated the usefulness of the system. Further work will address the question of a higher automation level for data acquisition and data source reliability assessment.

Collaboration


Dive into the Caroline Sablayrolles's collaboration.

Top Co-Authors

Avatar

Mireille Montréjaud-Vignoles

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Claire Vialle

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Audrey Breton

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guillaume Busset

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge