Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Caroline Soubiran is active.

Publication


Featured researches published by Caroline Soubiran.


Astronomy and Astrophysics | 2001

A database of high and medium-resolution stellar spectra

Philippe Prugniel; Caroline Soubiran

We present a database of 908 spectra of 709 stars obtained with the ELODIE spectrograph at the Observatoire de Haute-Provence. 52 orders of the echelle spectra have been carefully tted together to provide continuous, high-resolution spectra in the wavelength range = 410 680 nm. The archive provides a large coverage of the space of atmospheric parameters: Te from 3700 K to 13 600 K, log g from 0.03 to 5.86 and (Fe/H) from 2:8 to +0.7. At the nominal resolution, R = 42 000, the mean signal-to-noise ratio is 150 per pixel. The spectra given at this resolution are normalized to their pseudo-continuum and are intended to serve for abundance studies, spectral classication and tests of stellar atmosphere models. A lower resolution version of the archive, at R = 10 000, is calibrated in physical flux with a broad-band photometric precision of 2.5% and narrow-band precision of 0.5%. It is well suited to stellar population synthesis of galaxies and clusters, and to kinematical investigations of stellar systems. The archive is distributed in FITS format through the HYPERCAT and CDS databases.


Astronomy and Astrophysics | 2004

Evolutionary synthesis of galaxies at high spectral resolution with the code PEGASE-HR. Metallicity and age tracers

D. Le Borgne; B. Rocca-Volmerange; Ph. Prugniel; A. Lançon; M. Fioc; Caroline Soubiran

We present PEGASE-HR, a new stellar population synthesis program generating high resolution spectra (R = 10 000) over the optical range λλ = 400-680 nm. It links the spectro-photometric model of galaxy evolution PEGASE.2 (Fioc & Rocca-Volmerange 1997) to an updated version of the ELODIE library of stellar spectra observed with the 193 cm telescope at the Observatoire de Haute-Provence (Prugniel & Soubiran 2001a). The ELODIE star set gives a fairly complete coverage of the Hertzprung-Russell (HR) diagram and makes it possible to synthesize populations in the range (Fe/H) = − 2t o+0.4. This code is an exceptional tool for exploring signatures of metallicity, age, and kinematics. We focus on a detailed study of the sensitivity to age and metallicity of the high-resolution stellar absorption lines and of the classical metallic indices proposed until now to solve the age-metallicity degeneracy. Validity tests on several stellar lines are performed by comparing our predictions for Lick indices to the models of other groups. The comparison with the lower resolution library BaSeL (Lejeune et al. 1997) confirms the quality of the ELODIE library when used for single stellar populations (SSPs) from 10 7 to 2 × 10 10 yr. Predictions for the evolved populations of globular clusters and elliptical galaxies are given and compared to observational data. Two new high- resolution indices are proposed around the Hγ line. They should prove useful in the analysis of spectra from the new generation of telescopes and spectrographs.


Publications of the Astronomical Society of the Pacific | 2004

The ELODIE archive

Jihane Moultaka; S.A. Ilovaisky; Ph. Prugniel; Caroline Soubiran

ABSTRACT The ELODIE archive contains the complete collection of high‐resolution echelle spectra accumulated over the last decade using the ELODIE spectrograph at the Observatoire de Haute‐Provence 1.93 m telescope. This article presents the different data products and the facilities available on the World Wide Web to reprocess these data on‐the‐fly. Users can retrieve the data in FITS format from the archive Web page (http://atlas.obs‐hp.fr/elodie) and apply to them different functions, wavelength resampling and flux calibration in particular.


Astronomy and Astrophysics | 2014

Gaia FGK benchmark stars: Metallicity

P. Jofre; Ulrike Heiter; Caroline Soubiran; S. Blanco-Cuaresma; C. C. Worley; E. Pancino; T. Cantat-Gaudin; L. Magrini; Maria Bergemann; J. I. González Hernández; V. Hill; C. Lardo; P. de Laverny; Karin Lind; T. Masseron; D. Montes; A. Mucciarelli; Thomas Nordlander; A. Recto Blanco; J. Sobeck; R. Sordo; S. G. Sousa; H. M. Tabernero; A. Vallenari; S. Van Eck

Context. To calibrate automatic pipelines that determine atmospheric parameters of stars, one needs a sample of stars, or “benchmark stars”, with well-defined parameters to be used as a reference. Aims. We provide detailed documentation of the iron abundance determination of the 34 FGK-type benchmark stars that are selected to be the pillars for calibration of the one billion Gaia stars. They cover a wide range of temperatures, surface gravities, and metallicities. Methods. Up to seven different methods were used to analyze an observed spectral library of high resolutions and high signal-to-noise ratios. The metallicity was determined by assuming a value of effective temperature and surface gravity obtained from fundamental relations; that is, these parameters were known a priori and independently from the spectra. Results. We present a set of metallicity values obtained in a homogeneous way for our sample of benchmark stars. In addition to this value, we provide detailed documentation of the associated uncertainties. Finally, we report a value of the metallicity of the cool giant ψ Phe for the first time.


Monthly Notices of the Royal Astronomical Society | 2008

Spectroscopic ages and metallicities of stellar populations: validation of full spectrum fitting

Mina Koleva; Ph. Prugniel; Pierre Ocvirk; D. Le Borgne; Caroline Soubiran

Fitting whole spectra at intermediate spectral resolution (R= 1000–3000), to derive physical properties of stellar populations, appears as an optimized alternative to methods based on spectrophotometric indices: it uses all the redundant information contained in the signal. This paper addresses the validation of the method and it investigates the quality of the population models together with the reliability of the fitting procedures. Our method compares observed optical spectra with models to derive the age, metallicity and line broadening due to the internal kinematics. It is insensitive to the shape of the continuum and the results are consistent with Lick indices but three times more precise. We are using two algorithms: steckmap, a non-parametric regularized program and nbursts a parametric non-linear minimization. We compare three spectral synthesis models for single stellar populations (SSPs): Pegase-HR, Galaxev and Vazdekis/Miles, and we analyse spectra of Galactic clusters whose populations are known from studies of colour–magnitude diagrams (CMD) and spectroscopy of individual stars. We find the following. (1) The quality of the models critically depends on the stellar library they use, and in particular on its coverage in age, metallicity and surface gravity of the stars. Pegase-HR and Vazdekis/Miles are consistent, while the comparison between Pegase-HR and Bruzual & Charlot shows some systematics reflecting the limitations of the stellar library (STELIB) used to generate the latter models. (2) The two fitting programs are consistent. (3) For globular clusters and M67 spectra, the method restitutes metallicities in agreement with spectroscopy of stars with a precision of 0.14 dex. (4) The spectroscopic ages are very sensitive to the presence of a blue horizontal branch (BHB) or of blue stragglers. A BHB morphology results in a young SSP-equivalent age. Fitting a free amount of blue stars in addition to the SSP model to mimic the BHB improves and stabilizes the fit and restores ages in agreement with CMDs studies. This method is potentially able to disentangle age or BHB effects in extragalactic clusters. Full spectrum fitting is reliable method to derive the parameters of a stellar population.


Astronomy and Astrophysics | 2013

The Gaia astrophysical parameters inference system (Apsis) - Pre-launch description

Coryn A. L. Bailer-Jones; R. Andrae; Bernardino Arcay; T. L. Astraatmadja; I. Bellas-Velidis; A. Berihuete; A. Bijaoui; Claire Carrion; Carlos Dafonte; Y. Damerdji; A. Dapergolas; P. de Laverny; L. Delchambre; P. Drazinos; R. Drimmel; Y. Frémat; Diego Fustes; M. García-Torres; C. Guede; Ulrike Heiter; A.-M. Janotto; A. Karampelas; Dae-Won Kim; Jens Knude; I. Kolka; E. Kontizas; M. Kontizas; A. Korn; Alessandro C. Lanzafame; Yveline Lebreton

The Gaia satellite will survey the entire celestial sphere down to 20th magnitude, obtaining astrometry, photometry, and low resolution spectrophotometry on one billion astronomical sources, plus radial velocities for over one hundred million stars. Its main objective is to take a census of the stellar content of our Galaxy, with the goal of revealing its formation and evolution. Gaias unique feature is the measurement of parallaxes and proper motions with hitherto unparalleled accuracy for many objects. As a survey, the physical properties of most of these objects are unknown. Here we describe the data analysis system put together by the Gaia consortium to classify these objects and to infer their astrophysical properties using the satellites data. This system covers single stars, (unresolved) binary stars, quasars, and galaxies, all covering a wide parameter space. Multiple methods are used for many types of stars, producing multiple results for the end user according to different models and assumptions. Prior to its application to real Gaia data the accuracy of these methods cannot be assessed definitively. But as an example of the current performance, we can attain internal accuracies (RMS residuals) on F,G,K,M dwarfs and giants at G=15 (V=15-17) for a wide range of metallicites and interstellar extinctions of around 100K in effective temperature (Teff), 0.1mag in extinction (A0), 0.2dex in metallicity ([Fe/H]), and 0.25dex in surface gravity (logg). The accuracy is a strong function of the parameters themselves, varying by a factor of more than two up or down over this parameter range. After its launch in November 2013, Gaia will nominally observe for five years, during which the system we describe will continue to evolve in light of experience with the real data.


Astronomy and Astrophysics | 2017

Gaia Data Release 1 - Catalogue validation

F. Arenou; X. Luri; C. Babusiaux; C. Fabricius; Amina Helmi; A. C. Robin; A. Vallenari; S. Blanco-Cuaresma; T. Cantat-Gaudin; K. Findeisen; C. Reylé; L. Ruiz-Dern; R. Sordo; C. Turon; N. A. Walton; I.-C. Shih; E. Antiche; C. Barache; M. Barros; Maarten A. Breddels; J. M. Carrasco; G. Costigan; S. Diakite; Laurent Eyer; F. Figueras; L. Galluccio; J. Heu; C. Jordi; A. Krone-Martins; R. Lallement

Before the publication of the Gaia Catalogue, the contents of the first data release have undergone multiple dedicated validation tests. These tests aim at analysing in-depth the Catalogue content to detect anomalies, individual problems in specific objects or in overall statistical properties, either to filter them before the public release, or to describe the different caveats of the release for an optimal exploitation of the data. Dedicated methods using either Gaia internal data, external catalogues or models have been developed for the validation processes. They are testing normal stars as well as various populations like open or globular clusters, double stars, variable stars, quasars. Properties of coverage, accuracy and precision of the data are provided by the numerous tests presented here and jointly analysed to assess the data release content. This independent validation confirms the quality of the published data, Gaia DR1 being the most precise all-sky astrometric and photometric catalogue to-date. However, several limitations in terms of completeness, astrometric and photometric quality are identified and described. Figures describing the relevant properties of the release are shown and the testing activities carried out validating the user interfaces are also described. A particular emphasis is made on the statistical use of the data in scientific exploitation.


Astronomy and Astrophysics | 2015

Gaia FGK benchmark stars: abundances of α and iron-peak elements

P. Jofre; Ulrike Heiter; Caroline Soubiran; S. Blanco-Cuaresma; T. Masseron; Thomas Nordlander; L. Chemin; C. C. Worley; S. Van Eck; A. Hourihane; G. Gilmore; V. Adibekyan; Maria Bergemann; T. Cantat-Gaudin; E. Delgado-Mena; J. I. González Hernández; G. Guiglion; C. Lardo; P. de Laverny; Karin Lind; L. Magrini; S. Mikolaitis; D. Montes; E. Pancino; A. Recio-Blanco; R. Sordo; S. G. Sousa; H. M. Tabernero; A. Vallenari

Context. In the current era of large spectroscopic surveys of the Milky Way, reference stars for calibrating astrophysical parameters and chemical abundances are of paramount importance. Aims. We determine elemental abundances of Mg, Si, Ca, Sc, Ti, V, Cr, Mn, Co, and Ni for our predefined set of Gaia FGK benchmark stars. Methods. By analysing high-resolution spectra with a high signal-to-noise ratio taken from several archive datasets, we combined results of eight different methods to determine abundances on a line-by-line basis. We performed a detailed homogeneous analysis of the systematic uncertainties, such as differential versus absolute abundance analysis. We also assessed errors that are due to non-local thermal equilibrium and the stellar parameters in our final abundances. Results. Our results are provided by listing final abundances and the different sources of uncertainties, as well as line-by-line and method-by-method abundances. Conclusions. The atmospheric parameters of the Gaia FGK benchmark stars are already being widely used for calibration of several pipelines that are applied to different surveys. With the added reference abundances of ten elements, this set is very suitable for calibrating the chemical abundances obtained by these pipelines.


Astronomy and Astrophysics | 2014

The Gaia FGK benchmark stars - High resolution spectral library

S. Blanco-Cuaresma; Caroline Soubiran; P. Jofre; Ulrike Heiter

Context. An increasing number of high-resolution stellar spectra is available today thanks to many past and ongoing spectroscopic surveys. Consequently, numerous methods have been developed to perform an automatic spectral analysis on a massive amount of data. When reviewing published results, biases arise and they need to be addressed and minimized. Aims. We are providing a homogeneous library with a common set of calibration stars (known as the Gaia FGK benchmark stars) that will allow us to assess stellar analysis methods and calibrate spectroscopic surveys. Methods. High-resolution and signal-to-noise spectra were compiled from different instruments. We developed an automatic process to homogenize the observed data and assess the quality of the resulting library. Results. We built a high-quality library that will facilitate the assessment of spectral analyses and the calibration of present and future spectroscopic surveys. The automation of the process minimizes the human subjectivity and ensures reproducibility. Additionally, it allows us to quickly adapt the library to specific needs that can arise from future spectroscopic analyses.


Astronomy and Astrophysics | 2014

The Gaia-ESO Survey: Abundance ratios in the inner-disk open clusters Trumpler 20, NGC 4815, NGC 6705

L. Magrini; S. Randich; D. Romano; Eileen D. Friel; A. Bragaglia; R. Smiljanic; Heather R. Jacobson; A. Vallenari; M. Tosi; L. Spina; P. Donati; E. Maiorca; T. Cantat-Gaudin; R. Sordo; Maria Bergemann; F. Damiani; Grazina Tautvaisiene; S. Blanco-Cuaresma; F. M. Jiménez-Esteban; D. Geisler; Nami Mowlavi; C. Muñoz; I. San Roman; Caroline Soubiran; Sandro Villanova; S. Zaggia; G. Gilmore; Martin Asplund; Sofia Feltzing; R. D. Jeffries

Context. Open clusters are key tools to study the spatial distribution of abundances in the disk and their evolution with time. Aims. Using the first release of stellar parameters and abundances of the Gaia-ESO Survey, we analyse the chemical properties of stars in three old/intermediate-age open clusters, namely NGC 6705, NGC 4815, and Trumpler 20, which are all located in the inner part of the Galactic disk at Galactocentric radius R-GC similar to 7 kpc. We aim to prove their homogeneity and to compare them with the field population. Methods. We study the abundance ratios of elements belonging to two different nucleosynthetic channels: alpha-elements and iron-peak elements. For each element, we analyse the internal chemical homogeneity of cluster members, and we compare the cumulative distributions of cluster abundance ratios with those of solar neighbourhood turn-off stars and of inner-disk/bulge giants. We compare the abundance ratios of field and cluster stars with two chemical evolution models that predict different alpha-enhancement dependences on the Galactocentric distance due to different assumptions on the infall and star-formation rates. Results. The main results can be summarised as follows: i) cluster members are chemically homogeneous within 3 sigma in all analysed elements; ii) the three clusters have comparable [El/Fe] patterns within similar to 1 sigma, but they differ in their global metal content [El/H] with NGC 4815 having the lowest metallicity; their [El/Fe] ratios show differences and analogies with those of the field population, in both the solar neighbourhood and the bulge/inner disk; iii) comparing the abundance ratios with the results of two chemical evolution models and with field star abundance distributions, we find that the abundance ratios of Mg, Ni, and Ca in NGC 6705 might require an inner birthplace, implying a subsequent variation in its R-GC during its lifetime, which is consistent with previous orbit determination. Conclusions. Using the results of the first internal data release, we show the potential of the Gaia-ESO Survey through a homogeneous and detailed analysis of the cluster versus field populations to reveal the chemical structure of our Galaxy using a completely uniform analysis of different populations. We verify that the Gaia-ESO Survey data are able to identify the unique chemical properties of each cluster by pinpointing the composition of the interstellar medium at the epoch and place of formation. The full dataset of the Gaia-ESO Survey is a superlative tool to constrain the chemical evolution of our Galaxy by disentangling different formation and evolution scenarios.

Collaboration


Dive into the Caroline Soubiran's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. Jofre

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

Damien Le Borgne

Institut d'Astrophysique de Paris

View shared research outputs
Top Co-Authors

Avatar

J.-F. Le Campion

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Philippe Prugniel

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Brigitte Rocca-Volmerange

Institut d'Astrophysique de Paris

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerard Daigne

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge