Caroline Vonach
Medical University of Vienna
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Caroline Vonach.
Journal of Clinical Investigation | 2011
Dontscho Kerjaschki; Zsuzsanna Bago-Horvath; Margaretha Rudas; Veronika Sexl; Christine Schneckenleithner; Susanne Wolbank; Gregor Bartel; Sigurd Krieger; Romana Kalt; Brigitte Hantusch; Thomas Keller; Katalin Nagy-Bojarszky; Nicole Huttary; Ingrid Raab; Karin Lackner; Katharina Krautgasser; Helga Schachner; Klaus Kaserer; Sandra Rezar; Sybille Madlener; Caroline Vonach; Agnes Davidovits; Hitonari Nosaka; Monika Hämmerle; Katharina Viola; Helmut Dolznig; Martin Schreiber; Alexander Nader; Wolfgang Mikulits; Michael Gnant
In individuals with mammary carcinoma, the most relevant prognostic predictor of distant organ metastasis and clinical outcome is the status of axillary lymph node metastasis. Metastases form initially in axillary sentinel lymph nodes and progress via connecting lymphatic vessels into postsentinel lymph nodes. However, the mechanisms of consecutive lymph node colonization are unknown. Through the analysis of human mammary carcinomas and their matching axillary lymph nodes, we show here that intrametastatic lymphatic vessels and bulk tumor cell invasion into these vessels highly correlate with formation of postsentinel metastasis. In an in vitro model of tumor bulk invasion, human mammary carcinoma cells caused circular defects in lymphatic endothelial monolayers. These circular defects were highly reminiscent of defects of the lymphovascular walls at sites of tumor invasion in vivo and were primarily generated by the tumor-derived arachidonic acid metabolite 12S-HETE following 15-lipoxygenase-1 (ALOX15) catalysis. Accordingly, pharmacological inhibition and shRNA knockdown of ALOX15 each repressed formation of circular defects in vitro. Importantly, ALOX15 knockdown antagonized formation of lymph node metastasis in xenografted tumors. Furthermore, expression of lipoxygenase in human sentinel lymph node metastases correlated inversely with metastasis-free survival. These results provide evidence that lipoxygenase serves as a mediator of tumor cell invasion into lymphatic vessels and formation of lymph node metastasis in ductal mammary carcinomas.
British Journal of Cancer | 2011
Caroline Vonach; Katharina Viola; Benedikt Giessrigl; Nicole Huttary; Ingrid Raab; R Kalt; Sigurd Krieger; T P N Vo; Sibylle Madlener; Sabine Bauer; Brigitte Marian; M Hämmerle; Nicole Kretschy; Mathias Teichmann; B Hantusch; S Stary; Christine Unger; Mareike Seelinger; A Eger; Robert M. Mader; Walter Jäger; Wolfgang Schmidt; Michael Grusch; Helmut Dolznig; Wolfgang Mikulits; Georg Krupitza
Background:The intravasation of breast cancer into the lymphendothelium is an early step of metastasis. Little is known about the mechanisms of bulky cancer invasion into lymph ducts.Methods:To particularly address this issue, we developed a 3-dimensional co-culture model involving MCF-7 breast cancer cell spheroids and telomerase-immortalised human lymphendothelial cell (LEC) monolayers, which resembles intravasation in vivo and correlated the malignant phenotype with specific protein expression of LECs.Results:We show that tumour spheroids generate ‘circular chemorepellent-induced defects’ (CCID) in LEC monolayers through retraction of LECs, which was induced by 12(S)-hydroxyeicosatetraenoic acid (HETE) secreted by MCF-7 spheroids. This 12(S)-HETE-regulated retraction of LECs during intravasation particularly allowed us to investigate the key regulators involved in the motility and plasticity of LECs. In all, 12(S)-HETE induced pro-metastatic protein expression patterns and showed NF-κB-dependent up-regulation of the mesenchymal marker protein S100A4 and of transcriptional repressor ZEB1 concomittant with down-regulation of the endothelial adherence junction component VE-cadherin. This was in accordance with ∼50% attenuation of CCID formation by treatment of cells with 10 μM Bay11-7082. Notably, 12(S)-HETE-induced VE-cadherin repression was regulated by either NF-κB or by ZEB1 since ZEB1 siRNA knockdown abrogated not only 12(S)-HETE-mediated VE-cadherin repression but inhibited VE-cadherin expression in general.Interpretation:These data suggest an endothelial to mesenchymal transition-like process of LECs, which induces single cell motility during endothelial transmigration of breast carcinoma cells. In conclusion, this study demonstrates that the 12(S)-HETE-induced intravasation of MCF-7 spheroids through LECs require an NF-κB-dependent process of LECs triggering the disintegration of cell–cell contacts, migration, and the generation of CCID.
British Journal of Cancer | 2010
Sibylle Madlener; Philipp Saiko; Caroline Vonach; Katharina Viola; Nicole Huttary; Nicole Stark; Ruxandra Popescu; Manuela Gridling; N T-P Vo; Irene Herbacek; Agnes Davidovits; Benedikt Giessrigl; Somepalli Venkateswarlu; Silvana Geleff; Walter Jäger; Michael Grusch; Dontscho Kerjaschki; Wolfgang Mikulits; Trimurtulu Golakoti; Monika Fritzer-Szekeres; Thomas Szekeres; Georg Krupitza
Background:Digalloyl-resveratrol (di-GA) is a synthetic compound aimed to combine the biological effects of the plant polyhydroxy phenols gallic acid and resveratrol, which are both radical scavengers and cyclooxygenase inhibitors exhibiting anticancer activity. Their broad spectrum of activities may probably be due to adjacent free hydroxyl groups.Methods:Protein activation and expression were analysed by western blotting, deoxyribonucleoside triphosphate levels by HPLC, ribonucleotide reductase activity by 14C-cytidine incorporation into nascent DNA and cell-cycle distribution by FACS. Apoptosis was measured by Hoechst 33258/propidium iodide double staining of nuclear chromatin and the formation of gaps into the lymphendothelial barrier in a three-dimensional co-culture model consisting of MCF-7 tumour cell spheroids and human lymphendothelial monolayers.Results:In HL-60 leukaemia cells, di-GA activated caspase 3 and dose-dependently induced apoptosis. It further inhibited cell-cycle progression in the G1 phase by four different mechanisms: rapid downregulation of cyclin D1, induction of Chk2 with simultaneous downregulation of Cdc25A, induction of the Cdk-inhibitor p21Cip/Waf and inhibition of ribonucleotide reductase activity resulting in reduced dCTP and dTTP levels. Furthermore, di-GA inhibited the generation of lymphendothelial gaps by cancer cell spheroid-secreted lipoxygenase metabolites. Lymphendothelial gaps, adjacent to tumour bulks, can be considered as gates facilitating metastatic spread.Conclusion:These data show that di-GA exhibits three distinct anticancer activities: induction of apoptosis, cell-cycle arrest and disruption of cancer cell-induced lymphendothelial disintegration.
British Journal of Cancer | 2013
Katharina Viola; Sabine Kopf; Nicole Huttary; Caroline Vonach; Nicole Kretschy; Mathias Teichmann; Benedikt Giessrigl; Ingrid Raab; S Stary; Sigurd Krieger; Thomas H. Keller; Sabine Bauer; B Hantusch; Thomas Szekeres; R de Martin; Walter Jäger; Wolfgang Mikulits; Helmut Dolznig; Georg Krupitza; Michael Grusch
Background:Many cancers spread through lymphatic routes, and mechanistic insights of tumour intravasation into the lymphatic vasculature and targets for intervention are limited. The major emphasis of research focuses currently on the molecular biology of tumour cells, while still little is known regarding the contribution of lymphatics.Methods:Breast cancer cell spheroids attached to lymphendothelial cell (LEC) monolayers were used to investigate the process of intravasation by measuring the areas of ‘circular chemorepellent-induced defects’ (CCID), which can be considered as entry gates for bulky tumour intravasation. Aspects of tumour cell intravasation were furthermore studied by adhesion assay, and siRNA-mediated knockdown of intracellular adhesion molecule-1 (ICAM-1). Replacing cancer spheroids with the CCID-triggering compound 12(S)-hydroxyeicosatetraenoic acid (HETE) facilitated western blot analyses of Bay11-7082- and baicalein-treated LECs.Results:Binding of LECs to MCF-7 spheroids, which is a prerequisite for CCID formation, was mediated by ICAM-1 expression, and this depended on NF-κB and correlated with the expression of the prometastatic factor S100A4. Simultaneous inhibition of NF-κB with Bay11-7082 and of arachidonate lipoxygenase (ALOX)-15 with baicalein prevented CCID formation additively.Conclusion:Two mechanisms contribute to CCID formation: ALOX15 via the generation of 12(S)-HETE by MCF-7 cells, which induces directional migration of LECs, and ICAM-1 in LECs under control of NF-κB, which facilitates adhesion of MCF-7 cells to LECs.
Archives of Toxicology | 2013
Katharina Viola; Sabine Kopf; Lucie Rárová; Kanokwan Jarukamjorn; Nicole Kretschy; Mathias Teichmann; Caroline Vonach; Atanas G. Atanasov; Benedikt Giessrigl; Nicole Huttary; Ingrid Raab; Sigurd Krieger; Miroslav Strnad; Rainer de Martin; Philipp Saiko; Thomas Szekeres; Siegfried Knasmüller; Verena M. Dirsch; Walter Jäger; Michael Grusch; Helmut Dolznig; Wolfgang Mikulits; Georg Krupitza
Health beneficial effects of xanthohumol have been reported, and basic research provided evidence for anti-cancer effects. Furthermore, xanthohumol was shown to inhibit the migration of endothelial cells. Therefore, this study investigated the anti-metastatic potential of xanthohumol. MCF-7 breast cancer spheroids which are placed on lymphendothelial cells (LECs) induce “circular chemorepellent-induced defects” (CCIDs) in the LEC monolayer resembling gates for intravasating tumour bulks at an early step of lymph node colonisation. NF-κB reporter-, EROD-, SELE-, 12(S)-HETE- and adhesion assays were performed to investigate the anti-metastatic properties of xanthohumol. Western blot analyses were used to elucidate the mechanisms inhibiting CCID formation. Xanthohumol inhibited the activity of CYP, SELE and NF-kB and consequently, the formation of CCIDs at low micromolar concentrations. More specifically, xanthohumol affected ICAM-1 expression and adherence of MCF-7 cells to LECs, which is a prerequisite for CCID formation. Furthermore, markers of epithelial-to-mesenchymal transition (EMT) and of cell mobility such as paxillin, MCL2 and S100A4 were suppressed by xanthohumol. Xanthohumol attenuated tumour cell-mediated defects at the lymphendothelial barrier and inhibited EMT-like effects thereby providing a mechanistic explanation for the anti-intravasative/anti-metastatic properties of xanthohumol.
Mutation Research | 2010
Musa Khan; Benedikt Giessrigl; Caroline Vonach; Sibylle Madlener; Sonja Prinz; Irene Herbaceck; Christine Hölzl; Sabine Bauer; Katharina Viola; Wolfgang Mikulits; Rizwana Aleem Quereshi; Siegfried Knasmüller; Michael Grusch; Brigitte Kopp; Georg Krupitza
Berberis lycium Royle (Berberidacea) from Pakistan and its alkaloids berberine and palmatine have been reported to possess beneficial pharmacological properties. In the present study, the anti-neoplastic activities of different B. lycium root extracts and the major constituting alkaloids, berberine and palmatine were investigated in p53-deficient HL-60 cells. The strongest growth inhibitory and pro-apoptotic effects were found in the n-butanol (BuOH) extract followed by the ethyl acetate (EtOAc)-, and the water (H(2)O) extract. The chemical composition of the BuOH extract was analyzed by TLC and quantified by HPLC. 11.1 microg BuOH extract (that was gained from 1mg dried root) contained 2.0 microg berberine and 0.3 microg/ml palmatine. 1.2 microg/ml berberine inhibited cell proliferation significantly, while 0.5 microg/ml palmatine had no effect. Berberine and the BuOH extract caused accumulation of HL-60 cells in S-phase. This was preceded by a strong activation of Chk2, phosphorylation and degradation of Cdc25A, and the subsequent inactivation of Cdc2 (CDK1). Furthermore, berberine and the extract inhibited the expression of the proto-oncogene cyclin D1. Berberine and the BuOH extract induced the acetylation of alpha-tubulin and this correlated with the induction of apoptosis. The data demonstrate that berberine is a potent anti-neoplastic compound that acts via anti-proliferative and pro-apoptotic mechanisms independent of genotoxicity.
Phytomedicine | 2010
Ali Özmen; Sibylle Madlener; Sabine Bauer; Stanimira Krasteva; Caroline Vonach; Benedikt Giessrigl; Manuela Gridling; Katharina Viola; Nicole Stark; Philipp Saiko; Barbara Michel; Monika Fritzer-Szekeres; Thomas Szekeres; Tülay Askin-Celik; Liselotte Krenn; Georg Krupitza
AIM OF THIS STUDY Within the genus Scutellaria various species are used in different folk medicines throughout Asia. Traditional Chinese Medicine (TCM) uses S. baicalensis (Labiatae) to treat various inflammatory conditions. The root shows strong anticancer properties in vitro and was suggested for clinical trials against multiple myeloma. Further, S. barbata was successfully tested against metastatic breast cancer in a phase I/II trial. Therefore, we investigated the anti-cancer properties of S. orientalis L. ssp. carica Edmondson, an endemic subspecies from the traditional medicinal plant S. orientalis L. in Turkey, which is used to promote wound healing and to stop haemorrhage. MATERIALS AND METHODS Freeze-dried plant material was extracted with petroleum ether, dichloromethane, ethyl acetate, and methanol and the bioactivity of these extracts was analysed by proliferation assay, cell death determination, and by investigating protein expression profiles specific for cell cycle arrest and apoptosis. RESULTS The strongest anti-leukemic activity was shown by the methanol extract, which contained apigenin, baicalein, chrysin, luteolin and wogonin, with an IpC50 of 43 microg/ml (corresponding to 1.3mg/ml of dried plant material) which correlated with cyclin D1- and Cdc25A suppression and p21 induction. At 132 microg/ml (=4 mg/ml of the drug) this extract caused genotoxic stress indicated by substantial phosphorylation of the core histone H2AX (gamma-H2AX) followed by activation of caspase 3 and signature-type cleavage of PARP resulting in a 55% apoptosis rate after 48 hours of treatment. CONCLUSIONS Here, we report for the first time that S. orientalis L. ssp. carica Edmondson exhibited potent anti-leukaemic properties likely through the anti-proliferative effect of baicalein and the genotoxic property of wogonin.
British Journal of Cancer | 2013
Nicole Kretschy; Mathias Teichmann; Sabine Kopf; Atanas G. Atanasov; Philipp Saiko; Caroline Vonach; Katharina Viola; Benedikt Giessrigl; Nicole Huttary; Ingrid Raab; Sigurd Krieger; Walter Jäger; Thomas Szekeres; Sebastian M.B. Nijman; Wolfgang Mikulits; Verena M. Dirsch; Helmut Dolznig; Michael Grusch; Georg Krupitza
Background:As metastasis is the prime cause of death from malignancies, there is vibrant interest to discover options for the management of the different mechanistic steps of tumour spreading. Some approved pharmaceuticals exhibit activities against diseases they have not been developed for. In order to discover such activities that might attenuate lymph node metastasis, we investigated 225 drugs, which are approved by the US Food and Drug Administration.Methods:A three-dimensional cell co-culture assay was utilised measuring tumour cell-induced disintegrations of the lymphendothelial wall through which tumour emboli can intravasate as a limiting step in lymph node metastasis of ductal breast cancer. The disintegrated areas in the lymphendothelial cell (LEC) monolayers were induced by 12(S)-HETE, which is secreted by MCF-7 tumour cell spheroids, and are called ‘circular chemorepellent induced defects’ (CCIDs). The putative mechanisms by which active drugs prevented the formation of entry gates were investigated by western blotting, NF-κB activity assay and by the determination of 12(S)-HETE synthesis.Results:Acetohexamide, nifedipin, isoxsuprine and proadifen dose dependently inhibited the formation of CCIDs in LEC monolayers and inhibited markers of epithelial-to-mesenchymal-transition and migration. The migration of LECs is a prerequisite of CCID formation, and these drugs either repressed paxillin levels or the activities of myosin light chain 2, or myosin-binding subunit of myosin phosphatase. Isoxsuprine inhibited all three migration markers, and isoxsuprine and acetohexamide suppressed the synthesis of 12(S)-HETE, whereas proadifen and nifedipin inhibited NF-κB activation. Both the signalling pathways independently cause CCID formation.Conclusion:The targeting of different mechanisms was most likely the reason for synergistic effects of different drug combinations on the inhibition of CCID formation. Furthermore, the treatment with drug combinations allowed also a several-fold reduction in drug concentrations. These results encourage further screening of approved drugs and their in vivo testing.
Carcinogenesis | 2010
Nha T.P. Vo; Sibylle Madlener; Zsuzsanna Bago-Horvath; Irene Herbacek; Nicole Stark; Manuela Gridling; Paul Probst; Benedikt Giessrigl; Sabine Bauer; Caroline Vonach; Philipp Saiko; Michael Grusch; Thomas Szekeres; Monika Fritzer-Szekeres; Walter Jäger; Georg Krupitza; Afschin Soleiman
Estrogenic procarcinogenic effects of piceatannol (PIC) contrast reports about anticarcinogenic activities of PIC. To explain this contradiction, we investigated PIC in estrogen-dependent MCF-7 breast cancer cells and elucidated those cellular mechanisms that correlated with the observed cell effects induced by PIC. Low PIC concentrations (50 nM) induced c-Myc that depended on progesterone receptor (PR) and estrogen receptor (ER). PR-mediated c-Myc induction by PIC was independent of nuclear PR activity but depended on mitogen-activated protein kinase (MAPK) signaling and was associated with an acceleration of cancer cell proliferation. In contrast, 25 μM PIC inhibited deoxynucleotide triphosphate synthesis, activated Chk2 and p38-MAPK and this was accompanied by an attenuation of cancer cell growth. Apoptosis was most probably inhibited due to activation of Akt; however, high PIC concentrations (>100 μM) permitted apoptosis-like cell death in consequence to disruption of orchestrated mitotic signaling. The presented results show for the first time that nanomolar PIC concentrations signal through PR and Erk1/2 and provide a mechanistic explanation why moderate wine consumption-but not other alcoholic beverages-increases the breast cancer risk in women. In contrast, higher PIC concentrations in the micromolar range are considered for adjuvant anticancer therapeutic concepts.
Archives of Toxicology | 2013
Sabine Kopf; Katharina Viola; Atanas G. Atanasov; Kanokwan Jarukamjorn; Lucie Rárová; Nicole Kretschy; Mathias Teichmann; Caroline Vonach; Philipp Saiko; Benedikt Giessrigl; Nicole Huttary; Ingrid Raab; Sigurd Krieger; Marc Schumacher; Marc Diederich; Miroslav Strnad; Rainer de Martin; Thomas Szekeres; Walter Jäger; Verena M. Dirsch; Wolfgang Mikulits; Michael Grusch; Helmut Dolznig; Georg Krupitza
Metastases destroy the function of infested organs and are the main reason of cancer-related mortality. Heteronemin, a natural product derived from a marine sponge, was tested in vitro regarding its properties to prevent tumour cell intravasation through the lymph-endothelial barrier. In three-dimensional (3D) cell cultures consisting of MCF-7 breast cancer cell spheroids that were placed on lymph-endothelial cell (LEC) monolayers, tumour cell spheroids induce “circular chemorepellent-induced defects” (CCIDs) in the LEC monolayer; 12(S)-Hydroxyeicosatetraenoic acid (12(S)-HETE) and NF-κB activity are major factors inducing CCIDs, which are entry gates for tumour emboli intravasating the vasculature. This 3D co-culture is a validated model for the investigation of intravasation mechanisms and of drugs preventing CCID formation and hence lymph node metastasis. Furthermore, Western blot analyses, NF-κB reporter, EROD, SELE, 12(S)-HETE, and adhesion assays were performed to investigate the properties of heteronemin. Five micromolar heteronemin inhibited the directional movement of LECs and, therefore, the formation of CCIDs, which were induced by MCF-7 spheroids. Furthermore, heteronemin reduced the adhesion of MCF-7 cells to LECs and suppressed 12(S)-HETE-induced expression of the EMT marker paxillin, which is a regulator of directional cell migration. The activity of CYP1A1, which contributed to CCID formation, was also inhibited by heteronemin. Hence, heteronemin inhibits important mechanisms contributing to tumour intravasation in vitro and should be tested in vivo.