Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carolyn A. Worby is active.

Publication


Featured researches published by Carolyn A. Worby.


Cell | 2000

Drosophila Dscam Is an Axon Guidance Receptor Exhibiting Extraordinary Molecular Diversity

James C. Clemens; Huidy Shu; Carolyn A. Worby; Jian Xiao; Marco Muda; Jack E. Dixon; S. Lawrence Zipursky

A Drosophila homolog of human Down syndrome cell adhesion molecule (DSCAM), an immunoglobulin superfamily member, was isolated by its affinity to Dock, an SH3/SH2 adaptor protein required for axon guidance. Dscam binds directly to both Docks SH2 and SH3 domains. Genetic studies revealed that Dscam, Dock and Pak, a serine/threonine kinase, act together to direct pathfinding of Bolwigs nerve, containing a subclass of sensory axons, to an intermediate target in the embryo. Dscam also is required for the formation of axon pathways in the embryonic central nervous system. cDNA and genomic analyses reveal the existence of multiple forms of Dscam with a conserved architecture containing variable Ig and transmembrane domains. Alternative splicing can potentially generate more than 38,000 Dscam isoforms. This molecular diversity may contribute to the specificity of neuronal connectivity.


Nature Reviews Molecular Cell Biology | 2002

Sorting out the cellular functions of sorting nexins.

Carolyn A. Worby; Jack E. Dixon

Sorting nexins are a diverse group of cellular trafficking proteins that are unified by the presence of a phospholipid-binding motif — the PX domain. The ability of these proteins to bind specific phospholipids, as well as their propensity to form protein–protein complexes, points to a role for these proteins in membrane trafficking and protein sorting. It will be interesting to determine whether the various sorting nexins have specialized or generalized roles in protein trafficking.


Science | 2012

Secreted Kinase Phosphorylates Extracellular Proteins that Regulate Biomineralization

Vincent S. Tagliabracci; James L. Engel; Jianzhong Wen; Sandra E. Wiley; Carolyn A. Worby; Lisa N. Kinch; Junyu Xiao; Nick V. Grishin; Jack E. Dixon

The Real McCoy Some secreted proteins are phosphorylated, the most prominent example being the milk protein casein, but the enzymes that catalyze such phosphorylation have not been identified. (The proteins known as “casein kinases” are in fact cytosolic proteins and do not mediate physiological phosphorylation of casein.) Tagliabracci et al. (p. 1150, published online 10 May) searched for a human protein with the characteristics expected of a secretory protein kinase and identified Fam20C. Mutations in the gene encoding Fam20C cause defects in bone formation. Furthermore, the consensus sequence for Fam20C phosphorylation was found in several secreted proteins that function in biomineralization. Thus, Fam20C appears to be the “real” casein kinase and to function in bone physiology. The elusive enzyme that modifies proteins involved in building bone and teeth has now been identified. Protein phosphorylation is a fundamental mechanism regulating nearly every aspect of cellular life. Several secreted proteins are phosphorylated, but the kinases responsible are unknown. We identified a family of atypical protein kinases that localize within the Golgi apparatus and are secreted. Fam20C appears to be the Golgi casein kinase that phosphorylates secretory pathway proteins within S-x-E motifs. Fam20C phosphorylates the caseins and several secreted proteins implicated in biomineralization, including the small integrin-binding ligand, N-linked glycoproteins (SIBLINGs). Consequently, mutations in Fam20C cause an osteosclerotic bone dysplasia in humans known as Raine syndrome. Fam20C is thus a protein kinase dedicated to the phosphorylation of extracellular proteins.


Molecular Cell | 2009

The Fic Domain: Regulation of Cell Signaling by Adenylylation

Carolyn A. Worby; Seema Mattoo; Robert P. Kruger; Lynette B. Corbeil; Antonius Koller; Juan C. Mendez; Bereket Zekarias; Cheri S. Lazar; Jack E. Dixon

We show that the secreted antigen, IbpA, of the respiratory pathogen Histophilus somni induces cytotoxicity in mammalian cells via its Fic domains. Fic domains are defined by a core HPFxxGNGR motif and are conserved from bacteria to humans. We demonstrate that the Fic domains of IbpA catalyze a unique reversible adenylylation event that uses ATP to add an adenosine monophosphate (AMP) moiety to a conserved tyrosine residue in the switch I region of Rho GTPases. This modification requires the conserved histidine of the Fic core motif and renders Rho GTPases inactive. We further demonstrate that the only human protein containing a Fic domain, huntingtin yeast-interacting protein E (HYPE), also adenylylates Rho GTPases in vitro. Thus, we classify Fic domain-containing proteins as a class of enzymes that mediate bacterial pathogenesis as well as a previously unrecognized eukaryotic posttranslational modification that may regulate key signaling events.


Journal of Biological Chemistry | 2006

Laforin, a Dual Specificity Phosphatase That Dephosphorylates Complex Carbohydrates

Carolyn A. Worby; Matthew S. Gentry; Jack E. Dixon

Laforin is the only phosphatase in the animal kingdom that contains a carbohydrate-binding module. Mutations in the gene encoding laforin result in Lafora disease, a fatal autosomal recessive neurodegenerative disorder, which is diagnosed by the presence of intracellular deposits of insoluble complex carbohydrates known as Lafora bodies. We demonstrate that laforin interacts with proteins known to be involved in glycogen metabolism and rule out several of these proteins as potential substrates. Surprisingly, we find that laforin displays robust phosphatase activity against a phosphorylated complex carbohydrate. Furthermore, this activity is unique to laforin, since several other phosphatases are unable to dephosphorylate polysaccharides. Finally, fusing the carbohydrate-binding module of laforin to the dual specific phosphatase VHR does not result in the ability of this phosphatase to dephosphorylate polysaccharides. Therefore, we hypothesize that laforin is unique in its ability to utilize a phosphorylated complex carbohydrate as a substrate and that this function may be necessary for the maintenance of normal cellular glycogen.


Journal of Biological Chemistry | 1996

ONCOGENIC RET RECEPTORS DISPLAY DIFFERENT AUTOPHOSPHORYLATION SITES AND SUBSTRATE BINDING SPECIFICITIES

Xin Liu; Quinn Vega; Ruth A. Decker; Akhilesh Pandey; Carolyn A. Worby; Jack E. Dixon

The c-ret proto-oncogene encodes a receptor tyrosine kinase which plays an important role in neural crest as well as kidney development. Genetic studies have demonstrated that germ line mutations in the ret oncogene are the direct cause of multiple endocrine neoplasia (MEN) 2A and 2B, familial medullary thyroid carcinoma (FMTC), and Hirschsprungs disease. However, despite the large body of genetic and biological evidence suggesting the importance of RET in development and neoplastic processes, the signal transduction mechanisms of RET remain unknown. To begin to understand the molecular mechanisms of the disease states caused by mutations in RET, the patterns of autophosphorylation of the wild-type RET and the MEN mutants were studied using site-directed mutagenesis and phosphopeptide mapping. Among the 6 autophosphorylation sites found in the wild-type RET receptor, the MEN2B mutant lacked phosphorylation at Tyr-1096, leading to decreased Grb2 binding, while simultaneously creating a new phosphorylation site. These changes in autophosphorylation suggest that the MEN2B mutation may result in the more aggressive MEN2B phenotype by altering the receptors signaling capabilities.


Science Signaling | 2001

RNA Interference of Gene Expression (RNAi) in Cultured Drosophila Cells

Carolyn A. Worby; Nancy Simonson-Leff; Jack E. Dixon

RNA interference (RNAi) can be used to silence genes in a number of taxa, including plants, nematodes, protozoans, flies, and mammals represented by mouse embryos and cultured mammalian cells. To investigate signal transduction pathways, we used RNAi on Drosophila-cultured cells, which affords the opportunity to study protein function in a simple, well-defined cell culture system. Furthermore, the results obtained from experiments performed on cultured cells can be confirmed and extended in the whole organism, which, in the case of Drosophila, is also RNAi responsive. RNAi takes advantage of the unique ability of double-stranded RNA (dsRNA) molecules to induce posttranscriptional gene silencing in a highly specific manner. This silencing is efficacious and long-lived, as it is passed to subsequent generations in insect cell culture. To date, all Drosophila cell lines tested (S2, KC, BG2-C6, and Shi) respond to dsRNAs by ablating expression of the target protein. Furthermore, all dsRNAs tested (more than 15) have been effective at silencing the target gene. Drosophila cell cultures are simple, easily manipulated model systems that will facilitate loss-of-function studies applicable to a wide variety of questions.


Journal of Biological Chemistry | 2008

Malin Decreases Glycogen Accumulation by Promoting the Degradation of Protein Targeting to Glycogen (PTG)

Carolyn A. Worby; Matthew S. Gentry; Jack E. Dixon

Lafora disease (LD) is an autosomal recessive neurodegenerative disease that results in progressive myoclonus epilepsy and death. LD is caused by mutations in either the E3 ubiquitin ligase malin or the dual specificity phosphatase laforin. A hallmark of LD is the accumulation of insoluble glycogen in the cytoplasm of cells from most tissues. Glycogen metabolism is regulated by phosphorylation of key metabolic enzymes. One regulator of this phosphorylation is protein targeting to glycogen (PTG/R5), a scaffold protein that binds both glycogen and many of the enzymes involved in glycogen synthesis, including protein phosphatase 1 (PP1), glycogen synthase, phosphorylase, and laforin. Overexpression of PTG markedly increases glycogen accumulation, and decreased PTG expression decreases glycogen stores. To investigate if malin and laforin play a role in glycogen metabolism, we overexpressed PTG, malin, and laforin in tissue culture cells. We found that expression of malin or laforin decreased PTG-stimulated glycogen accumulation by 25%, and co-expression of malin and laforin abolished PTG-stimulated glycogen accumulation. Consistent with this result, we found that malin ubiquitinates PTG in a laforin-dependent manner, both in vivo and in vitro, and targets PTG for proteasome-dependent degradation. These results suggest an additional mechanism, involving laforin and malin, in regulating glycogen metabolism.


Proceedings of the National Academy of Sciences of the United States of America | 2008

A voltage-sensing phosphatase, Ci-VSP, which shares -sequence identity with PTEN, dephosphorylates phosphatidylinositol 4,5-bisphosphate

Hirohide Iwasaki; Yoshimichi Murata; Youngjun Kim; Md. Israil Hossain; Carolyn A. Worby; Jack E. Dixon; Thomas J. McCormack; Takehiko Sasaki; Yasushi Okamura

Phosphatidylinositol lipids play diverse physiological roles, and their concentrations are tightly regulated by various kinases and phosphatases. The enzymatic activity of Ciona intestinalis voltage sensor-containing phosphatase (Ci-VSP), recently identified as a member of the PTEN (phosphatase and tensin homolog deleted on chromosome 10) family of phosphatidylinositol phosphatases, is regulated by its own voltage-sensor domain in a voltage-dependent manner. However, a detailed mechanism of Ci-VSP regulation and its substrate specificity remain unknown. Here we determined the in vitro substrate specificity of Ci-VSP by measuring the phosphoinositide phosphatase activity of the Ci-VSP cytoplasmic phosphatase domain. Despite the high degree of identity shared between the active sites of PTEN and Ci-VSP, Ci-VSP dephosphorylates not only the PTEN substrate, phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3], but also, unlike PTEN, phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. Enzymatic action on PI(4,5)P2 removes the phosphate at position 5 of the inositol ring, resulting in the production of phosphatidylinositol 4-phosphate [PI(4)P]. The active site Cys-X5-Arg (CX5R) sequence of Ci-VSP differs with that of PTEN only at amino acid 365 where a glycine residue in Ci-VSP is replaced by an alanine in PTEN. Ci-VSP with a G365A mutation no longer dephosphorylates PI(4,5)P2 and is not capable of inducing depolarization-dependent rundown of a PI(4,5)P2-dependent potassium channel. These results indicate that Ci-VSP is a PI(3,4,5)P3/PI(4,5)P2 phosphatase that uniquely functions in the voltage-dependent regulation of ion channels through regulation of PI(4,5)P2 levels.


Trends in Biochemical Sciences | 2009

Lafora disease: insights into neurodegeneration from plant metabolism

Matthew S. Gentry; Jack E. Dixon; Carolyn A. Worby

Reversible phosphorylation modulates nearly every step of glycogenesis and glycogenolysis. Multiple metabolic disorders are the result of defective enzymes that control these phosphorylation events, enzymes that were identified biochemically before the advent of the molecular biology era. Lafora disease is a metabolic disorder resulting in accumulation of water-insoluble glucan in the cytoplasm, and manifests as a debilitating neurodegeneration that ends with the death of the patient. Unlike most metabolic disorders, the link between Lafora disease and metabolism has not been defined in almost 100 years. The results of recent studies with mammalian cells, mouse models, eukaryotic algae, and plants have begun to define the molecular mechanisms that cause Lafora disease. The emerging theme identifies a new phosphorylation substrate in glycogen metabolism, the glucan itself.

Collaboration


Dive into the Carolyn A. Worby's collaboration.

Top Co-Authors

Avatar

Jack E. Dixon

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Seema Mattoo

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marco Muda

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James L. Engel

University of California

View shared research outputs
Top Co-Authors

Avatar

Junyu Xiao

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge