Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carolyn A. Young is active.

Publication


Featured researches published by Carolyn A. Young.


Nature | 2009

Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans

Brian J. Haas; Sophien Kamoun; Michael C. Zody; Rays H. Y. Jiang; Robert E. Handsaker; Liliana M. Cano; Manfred Grabherr; Chinnappa D. Kodira; Sylvain Raffaele; Trudy Torto-Alalibo; Tolga O. Bozkurt; Audrey M. V. Ah-Fong; Lucia Alvarado; Vicky L. Anderson; Miles R. Armstrong; Anna O. Avrova; Laura Baxter; Jim Beynon; Petra C. Boevink; Stephanie R. Bollmann; Jorunn I. B. Bos; Vincent Bulone; Guohong Cai; Cahid Cakir; James C. Carrington; Megan Chawner; Lucio Conti; Stefano Costanzo; Richard Ewan; Noah Fahlgren

Phytophthora infestans is the most destructive pathogen of potato and a model organism for the oomycetes, a distinct lineage of fungus-like eukaryotes that are related to organisms such as brown algae and diatoms. As the agent of the Irish potato famine in the mid-nineteenth century, P. infestans has had a tremendous effect on human history, resulting in famine and population displacement. To this day, it affects world agriculture by causing the most destructive disease of potato, the fourth largest food crop and a critical alternative to the major cereal crops for feeding the world’s population. Current annual worldwide potato crop losses due to late blight are conservatively estimated at


PLOS ONE | 2008

Effector Genomics Accelerates Discovery and Functional Profiling of Potato Disease Resistance and Phytophthora Infestans Avirulence Genes

Vivianne G. A. A. Vleeshouwers; Hendrik Rietman; Pavel Krenek; Nicolas Champouret; Carolyn A. Young; Sang-Keun Oh; Miqia Wang; Klaas Bouwmeester; Ben Vosman; Richard G. F. Visser; E. Jacobsen; Francine Govers; Sophien Kamoun; Edwin van der Vossen

6.7u2009billion. Management of this devastating pathogen is challenged by its remarkable speed of adaptation to control strategies such as genetically resistant cultivars. Here we report the sequence of the P. infestans genome, which at ∼240u2009megabases (Mb) is by far the largest and most complex genome sequenced so far in the chromalveolates. Its expansion results from a proliferation of repetitive DNA accounting for ∼74% of the genome. Comparison with two other Phytophthora genomes showed rapid turnover and extensive expansion of specific families of secreted disease effector proteins, including many genes that are induced during infection or are predicted to have activities that alter host physiology. These fast-evolving effector genes are localized to highly dynamic and expanded regions of the P. infestans genome. This probably plays a crucial part in the rapid adaptability of the pathogen to host plants and underpins its evolutionary potential.


PLOS Genetics | 2013

Plant-symbiotic fungi as chemical engineers: multi-genome analysis of the clavicipitaceae reveals dynamics of alkaloid loci

Christopher L. Schardl; Carolyn A. Young; Uljana Hesse; Stefan G. Amyotte; Kalina Andreeva; Patrick J. Calie; Damien J. Fleetwood; David Haws; Neil Moore; Birgitt Oeser; Daniel G. Panaccione; Kathryn Schweri; Christine R. Voisey; Mark L. Farman; Jerzy W. Jaromczyk; Bruce A. Roe; Donal M. O'Sullivan; Barry Scott; Paul Tudzynski; Zhiqiang An; Elissaveta G. Arnaoudova; Charles T. Bullock; Nikki D. Charlton; Li Chen; Murray P. Cox; Randy D. Dinkins; Simona Florea; Anthony E. Glenn; Anna Gordon; Ulrich Güldener

Potato is the worlds fourth largest food crop yet it continues to endure late blight, a devastating disease caused by the Irish famine pathogen Phytophthora infestans. Breeding broad-spectrum disease resistance (R) genes into potato (Solanum tuberosum) is the best strategy for genetically managing late blight but current approaches are slow and inefficient. We used a repertoire of effector genes predicted computationally from the P. infestans genome to accelerate the identification, functional characterization, and cloning of potentially broad-spectrum R genes. An initial set of 54 effectors containing a signal peptide and a RXLR motif was profiled for activation of innate immunity (avirulence or Avr activity) on wild Solanum species and tentative Avr candidates were identified. The RXLR effector family IpiO induced hypersensitive responses (HR) in S. stoloniferum, S. papita and the more distantly related S. bulbocastanum, the source of the R gene Rpi-blb1. Genetic studies with S. stoloniferum showed cosegregation of resistance to P. infestans and response to IpiO. Transient co-expression of IpiO with Rpi-blb1 in a heterologous Nicotiana benthamiana system identified IpiO as Avr-blb1. A candidate gene approach led to the rapid cloning of S. stoloniferum Rpi-sto1 and S. papita Rpi-pta1, which are functionally equivalent to Rpi-blb1. Our findings indicate that effector genomics enables discovery and functional profiling of late blight R genes and Avr genes at an unprecedented rate and promises to accelerate the engineering of late blight resistant potato varieties.


The Plant Cell | 2009

In Planta Expression Screens of Phytophthora infestans RXLR Effectors Reveal Diverse Phenotypes, Including Activation of the Solanum bulbocastanum Disease Resistance Protein Rpi-blb2

Sang-Keun Oh; Carolyn A. Young; Minkyoung Lee; Ricardo Oliva; Tolga O. Bozkurt; Liliana M. Cano; Joe Win; Jorunn I. B. Bos; Hsin-Yin Liu; Mireille van Damme; William Morgan; Doil Choi; Edwin van der Vossen; Vivianne G. A. A. Vleeshouwers; Sophien Kamoun

The fungal family Clavicipitaceae includes plant symbionts and parasites that produce several psychoactive and bioprotective alkaloids. The family includes grass symbionts in the epichloae clade (Epichloë and Neotyphodium species), which are extraordinarily diverse both in their host interactions and in their alkaloid profiles. Epichloae produce alkaloids of four distinct classes, all of which deter insects, and some—including the infamous ergot alkaloids—have potent effects on mammals. The exceptional chemotypic diversity of the epichloae may relate to their broad range of host interactions, whereby some are pathogenic and contagious, others are mutualistic and vertically transmitted (seed-borne), and still others vary in pathogenic or mutualistic behavior. We profiled the alkaloids and sequenced the genomes of 10 epichloae, three ergot fungi (Claviceps species), a morning-glory symbiont (Periglandula ipomoeae), and a bamboo pathogen (Aciculosporium take), and compared the gene clusters for four classes of alkaloids. Results indicated a strong tendency for alkaloid loci to have conserved cores that specify the skeleton structures and peripheral genes that determine chemical variations that are known to affect their pharmacological specificities. Generally, gene locations in cluster peripheries positioned them near to transposon-derived, AT-rich repeat blocks, which were probably involved in gene losses, duplications, and neofunctionalizations. The alkaloid loci in the epichloae had unusual structures riddled with large, complex, and dynamic repeat blocks. This feature was not reflective of overall differences in repeat contents in the genomes, nor was it characteristic of most other specialized metabolism loci. The organization and dynamics of alkaloid loci and abundant repeat blocks in the epichloae suggested that these fungi are under selection for alkaloid diversification. We suggest that such selection is related to the variable life histories of the epichloae, their protective roles as symbionts, and their associations with the highly speciose and ecologically diverse cool-season grasses.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Elimination of ergovaline from a grass–Neotyphodium endophyte symbiosis by genetic modification of the endophyte

Daniel G. Panaccione; Richard D. Johnson; Jinghong Wang; Carolyn A. Young; Prapassorn Damrongkool; Barry Scott; Christopher L. Schardl

The Irish potato famine pathogen Phytophthora infestans is predicted to secrete hundreds of effector proteins. To address the challenge of assigning biological functions to computationally predicted effector genes, we combined allele mining with high-throughput in planta expression. We developed a library of 62 infection-ready P. infestans RXLR effector clones, obtained using primer pairs corresponding to 32 genes and assigned activities to several of these genes. This approach revealed that 16 of the 62 examined effectors cause phenotypes when expressed inside plant cells. Besides the well-studied AVR3a effector, two additional effectors, PexRD8 and PexRD3645-1, suppressed the hypersensitive cell death triggered by the elicitin INF1, another secreted protein of P. infestans. One effector, PexRD2, promoted cell death in Nicotiana benthamiana and other solanaceous plants. Finally, two families of effectors induced hypersensitive cell death specifically in the presence of the Solanum bulbocastanum late blight resistance genes Rpi-blb1 and Rpi-blb2, thereby exhibiting the activities expected for Avrblb1 and Avrblb2. The AVRblb2 family was then studied in more detail and found to be highly variable and under diversifying selection in P. infestans. Structure-function experiments indicated that a 34–amino acid region in the C-terminal half of AVRblb2 is sufficient for triggering Rpi-blb2 hypersensitivity and that a single positively selected AVRblb2 residue is critical for recognition by Rpi-blb2.


Molecular Genetics and Genomics | 2005

Molecular cloning and genetic analysis of a symbiosis-expressed gene cluster for lolitrem biosynthesis from a mutualistic endophyte of perennial ryegrass

Carolyn A. Young; Michelle K. Bryant; Michael J. Christensen; Brian A. Tapper; Gregory T. Bryan; Barry Scott

The fungal endophytes Neotyphodium lolii and Neotyphodium sp. Lp1 from perennial ryegrass (Lolium perenne), and related endophytes in other grasses, produce the ergopeptine toxin ergovaline, among other alkaloids, while also increasing plant fitness and resistance to biotic and abiotic stress. In the related fungus, Claviceps purpurea, the biosynthesis of ergopeptines requires the activities of two peptide synthetases, LPS1 and LPS2. A peptide synthetase gene hypothesized to be important for ergopeptine biosynthesis was identified in C. purpurea by its clustering with another ergot alkaloid biosynthetic gene, dmaW. Sequence analysis conducted independently of the research presented here indicates that this gene encodes LPS1 [Tudzynski, P., Holter, K., Correia, T., Arntz, C., Grammel, N. & Keller, U. (1999) Mol. Gen. Genet. 261, 133–141]. We have cloned a similar peptide synthetase gene from Neotyphodium lolii and inactivated it by gene knockout in Neotyphodium sp. Lp1. The resulting strain retained full compatibility with its perennial ryegrass host plant as assessed by immunoblotting of tillers and quantitative PCR. However, grass–endophyte associations containing the knockout strain did not produce detectable quantities of ergovaline as analyzed by HPLC with fluorescence detection. Disruption of this gene provides a means to manipulate the accumulation of ergovaline in endophyte-infected grasses for the purpose of determining the roles of ergovaline in endophyte-associated traits and, potentially, for ameliorating toxicoses in livestock.


Molecular Microbiology | 2001

Molecular cloning and genetic analysis of an indole‐diterpene gene cluster from Penicillium paxilli

Carolyn A. Young; Lisa K. McMillan; Emily Telfer; Barry Scott

Lolitrems are potent tremorgenic mycotoxins that are synthesised by clavicipitaceous fungal endophytes of the Epichloë/Neotyphodium group in association with grasses. These indole–diterpenes confer major ecological benefits on the grass–endophyte symbiotum. A molecular signature for diterpene biosynthesis is the presence of two geranylgeranyl diphosphate (GGPP) synthases. Using degenerate primers for conserved domains of fungal GGPP synthases, we cloned two such genes, ltmG and ggsA, from Neotyphodium lolii. Adjacent to ltmG are two genes, ltmM and ltmK, that are predicted to encode an FAD-dependent monooxygenase and a cytochrome P450 monooxygenase, respectively. The cluster of ltm genes is flanked by AT-rich retrotransposon DNA that appears to have undergone extensive repeat induced point (RIP) mutation. Epichloë festucae, the sexual ancestor of N. lolii, contains an identical ltm gene cluster, but lacks the retrotransposon “platform’‘ on the right flank. Associations established between perennial ryegrass and an E. festucae mutant deleted for ltmM lack detectable levels of lolitrems. A wild-type copy of ltmM complemented this phenotype, as did paxM from Penicillium paxilli. Northern hybridization and RT-PCR analysis showed that all three genes are weakly expressed in culture but strongly induced in planta. The relative endophyte biomass in these associations was estimated by real-time PCR to be between 0.3 and 1.9%. Taking this difference into account, the steady-state levels of the ltm transcripts are about 100-fold greater than the levels of the endogenous ryegrass β-tubulin (β -Tub1) and actin (Act1) RNAs. Based on these results we propose that ltmG, ltmM and ltmK are members of a set of genes required for lolitrem biosynthesis in E. festucae and N. lolii.


Fungal Biology | 2008

The genetic basis for indole-diterpene chemical diversity in filamentous fungi.

Sanjay Saikia; Matthew J. Nicholson; Carolyn A. Young; Emily J. Parker; Barry Scott

The indole‐diterpene paxilline is a potent tremorgenic mammalian mycotoxin and a known inhibitor of maxi‐K ion channels. The gene cluster responsible for paxilline biosynthesis in Penicillium paxilli was identified by mapping four large plasmid‐induced chromosome deletions. The cluster is predicted to lie within a 50u2003kb region of chromosome Va and to contain 17 genes, including a geranylgeranyl pyrophosphate (GGPP) synthase (paxG), two FAD‐dependent monooxygenases (paxM and N), two cytochrome P450 monooxygenases (paxP and Q), a dimethylallyltryptophan (DMAT) synthase (paxD) and two possible transcription factors (paxR and paxS), which contain a Zn(II)2Cys6 DNA‐binding motif. Targeted replacement of paxG confirmed that it is essential for paxilline biosynthesis but dispensable for growth. The GGPP for primary metabolism is predicted to be provided by a second GGPP synthase (ggs1) that was cloned, sequenced and mapped to chromosome IV. Semi‐quantitative reverse transcriptase–polymerase chain reaction analysis demonstrated that the expression of paxG, paxM and paxP in submerged liquid cultures of P. paxilli increased dramatically with the onset of paxilline biosynthesis. In contrast, the expression of β‐tubulin (tub2) and ggs1 was not induced. This is the first description of the molecular cloning and genetic analysis of an indole‐diterpene gene cluster.


Applied and Environmental Microbiology | 2009

Indole-Diterpene Biosynthetic Capability of Epichloë Endophytes as Predicted by ltm Gene Analysis

Carolyn A. Young; Brian A. Tapper; Kimberley J. May; Christina D. Moon; Christopher L. Schardl; Barry Scott

Indole-diterpenes are a structurally diverse group of secondary metabolites with a common cyclic diterpene backbone derived from geranylgeranyl diphosphate and an indole group derived from indole-3-glycerol phosphate. Different types and patterns of ring substitutions and ring stereochemistry generate this structural diversity. This group of compounds is best known for their neurotoxic effects in mammals, causing syndromes such as ryegrass staggers in sheep and cattle. Because many of the fungi that synthesise these compounds form symbiotic relationships with plants, insects, and other fungi, the synthesis of these compounds may confer an ecological advantage to these associations. Considerable recent progress has been made on understanding indole-diterpene biosynthesis in filamentous fungi, principally through the cloning and characterisation of the genes and gene products for paxilline biosynthesis in Penicillium paxilli. Important insights into how the indole-diterpene backbone is synthesised and decorated have been obtained using P. paxilli mutants in this pathway. This review provides an overview of these recent developments.


Toxins | 2013

Currencies of Mutualisms: Sources of Alkaloid Genes in Vertically Transmitted Epichloae

Christopher L. Schardl; Carolyn A. Young; Juan Pan; Simona Florea; Johanna E. Takach; Daniel G. Panaccione; Mark L. Farman; Jennifer S. Webb; Jolanta Jaromczyk; Nikki D. Charlton; Padmaja Nagabhyru; Li Chen; Chong Shi; Adrian Leuchtmann

ABSTRACT Bioprotective alkaloids produced by Epichloë and closely related asexual Neotyphodium fungal endophytes protect their grass hosts from insect and mammalian herbivory. One class of these compounds, known for antimammalian toxicity, is the indole-diterpenes. The LTM locus of Neotyphodium lolii (Lp19) and Epichloë festuce (Fl1), required for the biosynthesis of the indole-diterpene lolitrem, consists of 10 ltm genes. We have used PCR and Southern analysis to screen a broad taxonomic range of 44 endophyte isolates to determine why indole-diterpenes are present in so few endophyte-grass associations in comparison to that of the other bioprotective alkaloids, which are more widespread among the endophtyes. All 10 ltm genes were present in only three epichloë endophytes. A predominance of the asexual Neotyphodium spp. examined contained 8 of the 10 ltm genes, with only one N. lolii containing the entire LTM locus and the ability to produce lolitrems. Liquid chromatography-tandem mass spectrometry profiles of indole-diterpenes from a subset of endophyte-infected perennial ryegrass showed that endophytes that contained functional genes present in ltm clusters 1 and 2 were capable of producing simple indole-diterpenes such as paspaline, 13-desoxypaxilline, and terpendoles, compounds predicted to be precursors of lolitrem B. Analysis of toxin biosynthesis genes by PCR now enables a diagnostic method to screen endophytes for both beneficial and detrimental alkaloids and can be used as a resource for screening isolates required for forage improvement.

Collaboration


Dive into the Carolyn A. Young's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nikki D. Charlton

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge