Carolyn G. Rasmussen
University of California, Riverside
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Carolyn G. Rasmussen.
Fungal Biology | 2011
Meritxell Riquelme; Oded Yarden; Salomon Bartnicki-Garcia; Barry J. Bowman; Ernestina Castro-Longoria; Stephen J. Free; André Fleißner; Michael Freitag; Roger R. Lew; Rosa R. Mouriño-Pérez; Michael Plamann; Carolyn G. Rasmussen; Corinna Richthammer; Robert W. Roberson; Eddy Sánchez-León; Stephan Seiler; Michael K. Watters
Neurospora crassa has been at the forefront of biological research from the early days of biochemical genetics to current progress being made in understanding gene and genetic network function. Here, we discuss recent developments in analysis of the fundamental form of fungal growth, development and proliferation -- the hypha. Understanding the establishment and maintenance of polarity, hyphal elongation, septation, branching and differentiation are at the core of current research. The advances in the identification and functional dissection of regulatory as well as structural components of the hypha provide an expanding basis for elucidation of fundamental attributes of the fungal cell. The availability and continuous development of various molecular and microscopic tools, as utilized by an active and co-supportive research community, promises to yield additional important new discoveries on the biology of fungi.
Annual Review of Plant Biology | 2011
Carolyn G. Rasmussen; John A. Humphries; Laurie G. Smith
The cellular organization of plant tissues is determined by patterns of cell division and growth coupled with cellular differentiation. Cells proliferate mainly via symmetric division, whereas asymmetric divisions are associated with initiation of new developmental patterns and cell types. Division planes in both symmetrically and asymmetrically dividing cells are established through the action of a cortical preprophase band (PPB) of cytoskeletal filaments, which is disassembled upon transition to metaphase, leaving behind a cortical division site (CDS) to which the cytokinetic phragmoplast is later guided to position the cell plate. Recent progress has been made in understanding PPB formation and function as well as the nature and function of the CDS. In asymmetrically dividing cells, division plane establishment is governed by cell polarity. Recent work is beginning to shed light on polarization mechanisms in asymmetrically dividing cells, with receptor-like proteins and potential downstream effectors emerging as important players in this process.
Plant Journal | 2013
Carolyn G. Rasmussen; Amanda J. Wright; Sabine Müller
In plants, as in all eukaryotic organisms, microtubule- and actin-filament based structures play fundamental roles during cell division. In addition to the mitotic spindle, plant cells have evolved a unique cytoskeletal structure that designates a specific division plane before the onset of mitosis via formation of a cortical band of microtubules and actin filaments called the preprophase band. During cytokinesis, a second plant-specific microtubule and actin filament structure called the phragmoplast directs vesicles to create the new cell wall. In response to intrinsic and extrinsic cues, many plant cells form a preprophase band in G2 , then the preprophase band recruits specific proteins to populate the cortical division site prior to disassembly of the preprophase band in prometaphase. These proteins are thought to act as a spatial reminder that actively guides the phragmoplast towards the cortical division site during cytokinesis. A number of proteins involved in determination and maintenance of the plane of cell division have been identified. Our current understanding of the molecular interactions of these proteins and their regulation of microtubules is incomplete, but advanced imaging techniques and computer simulations have validated some early concepts of division site determination.
Eukaryotic Cell | 2005
Carolyn G. Rasmussen; N. Louise Glass
ABSTRACT Proteins in the Rho family are small monomeric GTPases primarily involved in polarization, control of cell division, and reorganization of cytoskeletal elements. Phylogenetic analysis of predicted fungal Rho proteins suggests that a new Rho-type GTPase family, whose founding member is Rho4 from the archiascomycete Schizosaccharomyces pombe, is involved in septation. S. pombe rho4Δ mutants have multiple, abnormal septa. In contrast to S. pombe rho4Δ mutants, we show that strains containing rho-4 loss-of-function mutations in the filamentous fungus Neurospora crassa lead to a loss of septation. Epitope-tagged RHO-4 localized to septa and to the plasma membrane. In other fungi, the steps required for septation include formin, septin, and actin localization followed by cell wall synthesis and the completion of septation. rho-4 mutants were unable to form actin rings, showing that RHO-4 is required for actin ring formation. Characterization of strains containing activated alleles of rho-4 showed that RHO-4-GTP is likely to initiate new septum formation in N. crassa.
Fungal Genetics and Biology | 2010
Anna Simonin; Carolyn G. Rasmussen; Mabel Yang; N. Louise Glass
Cell-cell fusion during fertilization and between somatic cells is an integral process in eukaryotic development. In Neurospora crassa, the hyphal anastomosis mutant, ham-2, fails to undergo somatic fusion. In both humans and Saccharomyces cerevisiae, homologs of ham-2 are found in protein complexes that include homologs to a striatin-like protein and a forkhead-associated (FHA) protein. We identified a striatin (ham-3) gene and a FHA domain (ham-4) gene in N. crassa; strains containing mutations in ham-3 and ham-4 show severe somatic fusion defects. However, ham-3 and ham-4 mutants undergo mating-cell fusion, indicating functional differences in somatic versus sexual fusion events. The ham-2 and ham-3 mutants are female sterile, while ham-4 mutants are fertile. Homozygous crosses of ham-2, ham-3 and ham-4 mutants show aberrant meiosis and abnormally shaped ascospores. These data indicate that, similar to humans, the HAM proteins may form different signaling complexes that are important during both vegetative and sexual development in N. crassa.
Journal of Cell Science | 2011
Carolyn G. Rasmussen; Brian Sun; Laurie G. Smith
TANGLED (TAN) is the founding member of a family of plant-specific proteins required for correct orientation of the division plane. Arabidopsis thaliana TAN is localized before prophase until the end of cytokinesis at the cortical division site (CDS), where it appears to help guide the cytokinetic apparatus towards the cortex. We show that TAN is actively recruited to the CDS by distinct mechanisms before and after preprophase band (PPB) disassembly. Colocalization with the PPB is mediated by one region of TAN, whereas another region mediates its recruitment to the CDS during cytokinesis. This second region binds directly to POK1, a kinesin that is required for TAN localization. Although this region of TAN is recruited to the CDS during cytokinesis without first colocalizing with the PPB, pharmacological evidence indicates that the PPB is nevertheless required for both early and late localization of TAN at the CDS. Finally, we show that phosphatase activity is required for maintenance of early but not late TAN localization at the CDS. We propose a new model in which TAN is actively recruited to the CDS by several mechanisms, indicating that the CDS is dynamically modified from prophase through to the completion of cytokinesis.
Eukaryotic Cell | 2007
Carolyn G. Rasmussen; N. Louise Glass
ABSTRACT rho-4 mutants of the filamentous fungus Neurospora crassa lack septa and asexual spores (conidia) and grow slowly. In this report, localization of green fluorescent protein-tagged RHO-4 is used to elucidate the differences in factors controlling RHO-4 localization during vegetative growth versus asexual development. RHO-4 forms a ring at incipient vegetative septation sites that constricts with the formation of the septum toward the septal pore; RHO-4 persists around the septal pore after septum completion. During the formation of conidia, RHO-4 localizes to the primary septum but subsequently is relocalized to the cytoplasm after the placement of the secondary septum. Cytoplasmic localization and inactivation of RHO-4 are mediated by a direct physical interaction with RDI-1, a RHO guanosine nucleotide dissociation inhibitor. Inappropriate activation of the cyclic AMP-dependent protein kinase A pathway during vegetative growth causes mislocalization of RHO-4 away from septa to the cytoplasm, a process which was dependent upon RDI-1. An adenylate cyclase cr-1 mutant partially suppresses the aconidial defect of rho-4 mutants but only rarely suppresses the vegetative septation defect, indicating that conidial septation is negatively regulated by CR-1. These data highlight the differences in the regulation of septation during conidiation versus vegetative septation in filamentous fungi.
Trends in Cell Biology | 2017
Andrei Smertenko; Farhah F. Assaad; František Baluška; Magdalena Bezanilla; Henrik Buschmann; Georgia Drakakaki; Marie-Theres Hauser; Marcel E. Janson; Yoshinobu Mineyuki; Ian Moore; Sabine Müller; Takashi Murata; Marisa S. Otegui; Emmanuel Panteris; Carolyn G. Rasmussen; Anne-Catherine Schmit; Jozef Šamaj; Lacey Samuels; L. Andrew Staehelin; Daniël Van Damme; Geoffrey O. Wasteneys; Viktor Žárský
Plant cytokinesis is orchestrated by a specialized structure, the phragmoplast. The phragmoplast first occurred in representatives of Charophyte algae and then became the main division apparatus in land plants. Major cellular activities, including cytoskeletal dynamics, vesicle trafficking, membrane assembly, and cell wall biosynthesis, cooperate in the phragmoplast under the guidance of a complex signaling network. Furthermore, the phragmoplast combines plant-specific features with the conserved cytokinetic processes of animals, fungi, and protists. As such, the phragmoplast represents a useful system for understanding both plant cell dynamics and the evolution of cytokinesis. We recognize that future research and knowledge transfer into other fields would benefit from standardized terminology. Here, we propose such a lexicon of terminology for specific structures and processes associated with plant cytokinesis.
Fungal Genetics and Biology | 2008
Carolyn G. Rasmussen; Randy M. Morgenstein; Sebastian Peck; N. Louise Glass
The multinucleate hyphae of the filamentous ascomycete fungus Neurospora crassa grow by polarized hyphal tip extension. Both the actin and microtubule cytoskeleton are required for maximum hyphal extension, in addition to other vital processes. Previously, we have shown that the monomeric GTPase encoded by the N. crassa rho-4 locus is required for actin ring formation during the process of septation; rho-4 mutants lack septa. However, other phenotypic aspects of the rho-4 mutant, such as slow growth and cytoplasmic bleeding, led us to examine the hypothesis that the microtubule (MT) cytoskeleton of the rho-4 mutant was affected in morphology and dynamics. Unlike a wild-type strain, the rho-4 mutant had few MTs and these few MTs originated from nuclear spindle pole bodies. rho-4 mutants and rho-4 strains containing a GTP-locked (activated) rho-4 allele showed a reduction in numbers of cytoplasmic MTs and microtubule stabilization at hyphal tips. Strains containing a GDP-biased (negative) allele of rho-4 showed normal numbers of MTs and minor effects on microtubule stabilization. An examination of nuclear dynamics revealed that rho-4 mutants have large, and often, stretched or broken nuclei. These observations indicate that RHO-4 plays important roles in regulating both the actin and MT cytoskeleton, which are essential for optimal hyphal tip growth and in nuclear distribution and morphology.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Pablo Martinez; Anding Luo; Anne W. Sylvester; Carolyn G. Rasmussen
Significance Speculation about the role of division plane orientation in the growth of a plant has hinged on two conflicting ideas. The first idea is that the plant body is specified at the tissue level and cells divide merely to fill in the space, making the orientation of division unimportant to the overall growth. The second idea is that the orientation of the division plane is critical for tissue-level patterning and therefore also impacts growth. This study suggests that misorientation of the division plane together with cell-cycle delays cannot be compensated for. Therefore, division plane orientation is a critical but potentially indirect factor for growth. How growth, microtubule dynamics, and cell-cycle progression are coordinated is one of the unsolved mysteries of cell biology. A maize mutant, tangled1, with known defects in growth and proper division plane orientation, and a recently characterized cell-cycle delay identified by time-lapse imaging, was used to clarify the relationship between growth, cell cycle, and proper division plane orientation. The tangled1 mutant was fully rescued by introduction of cortical division site localized TANGLED1-YFP. A CYCLIN1B destruction box was fused to TANGLED1-YFP to generate a line that mostly rescued the division plane defect but still showed cell-cycle delays when expressed in the tangled1 mutant. Although an intermediate growth phenotype between wild-type and the tangled1 mutant was expected, these partially rescued plants grew as well as wild-type siblings, indicating that mitotic progression delays alone do not alter overall growth. These data indicate that division plane orientation, together with proper cell-cycle progression, is critical for plant growth.