Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carolyn L. Smith is active.

Publication


Featured researches published by Carolyn L. Smith.


Developmental Cell | 2001

The Role of Dynamin-Related Protein 1, a Mediator of Mitochondrial Fission, in Apoptosis

Stephan Frank; Brigitte Gaume; Elke S. Bergmann-Leitner; Wolfgang W. Leitner; Everett G. Robert; Frédéric Catez; Carolyn L. Smith; Richard J. Youle

In healthy cells, fusion and fission events participate in regulating mitochondrial morphology. Disintegration of the mitochondrial reticulum into multiple punctiform organelles during apoptosis led us to examine the role of Drp1, a dynamin-related protein that mediates outer mitochondrial membrane fission. Upon induction of apoptosis, Drp1 translocates from the cytosol to mitochondria, where it preferentially localizes to potential sites of organelle division. Inhibition of Drp1 by overexpression of a dominant-negative mutant counteracts the conversion to a punctiform mitochondrial phenotype, prevents the loss of the mitochondrial membrane potential and the release of cytochrome c, and reveals a reproducible swelling of the organelles. Remarkably, inhibition of Drp1 blocks cell death, implicating mitochondrial fission as an important step in apoptosis.


Journal of Cell Biology | 2002

Spatial and temporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis

Mariusz Karbowski; Yang-Ja Lee; Brigitte Gaume; Seon-Yong Jeong; Stephan Frank; Amotz Nechushtan; Ansgar Santel; Margaret T. Fuller; Carolyn L. Smith; Richard J. Youle

We find that Bax, a proapoptotic member of the Bcl-2 family, translocates to discrete foci on mitochondria during the initial stages of apoptosis, which subsequently become mitochondrial scission sites. A dominant negative mutant of Drp1, Drp1K38A, inhibits apoptotic scission of mitochondria, but does not inhibit Bax translocation or coalescence into foci. However, Drp1K38A causes the accumulation of mitochondrial fission intermediates that are associated with clusters of Bax. Surprisingly, Drp1 and Mfn2, but not other proteins implicated in the regulation of mitochondrial morphology, colocalize with Bax in these foci. We suggest that Bax participates in apoptotic fragmentation of mitochondria.


Science | 1996

Diffusional Mobility of Golgi Proteins in Membranes of Living Cells

Nelson B. Cole; Carolyn L. Smith; Noah Sciaky; Mark Terasaki; Michael Edidin; Jennifer Lippincott-Schwartz

The mechanism by which Golgi membrane proteins are retained within the Golgi complex in the midst of a continuous flow of protein and lipid is not yet understood. The diffusional mobilities of mammalian Golgi membrane proteins fused with green fluorescent protein from Aequorea victoria were measured in living HeLa cells with the fluorescence photobleaching recovery technique. The diffusion coefficients ranged from 3 × 10−9 square centimeters per second to 5 × 10−9 square centimeters per second, with greater than 90 percent of the chimeric proteins mobile. Extensive lateral diffusion of the chimeric proteins occurred between Golgi stacks. Thus, the chimeras diffuse rapidly and freely in Golgi membranes, which suggests that Golgi targeting and retention of these molecules does not depend on protein immobilization.


Journal of Cell Biology | 2004

Quantitation of mitochondrial dynamics by photolabeling of individual organelles shows that mitochondrial fusion is blocked during the Bax activation phase of apoptosis.

Mariusz Karbowski; Damien Arnoult; Hsiuchen Chen; David C. Chan; Carolyn L. Smith; Richard J. Youle

A dynamic balance of organelle fusion and fission regulates mitochondrial morphology. During apoptosis this balance is altered, leading to an extensive fragmentation of the mitochondria. Here, we describe a novel assay of mitochondrial dynamics based on confocal imaging of cells expressing a mitochondrial matrix–targeted photoactivable green fluorescent protein that enables detection and quantification of organelle fusion in living cells. Using this assay, we visualize and quantitate mitochondrial fusion rates in healthy and apoptotic cells. During apoptosis, mitochondrial fusion is blocked independently of caspase activation. The block in mitochondrial fusion occurs within the same time range as Bax coalescence on the mitochondria and outer mitochondrial membrane permeabilization, and it may be a consequence of Bax/Bak activation during apoptosis.


Cell | 1999

Golgi Membranes Are Absorbed into and Reemerge from the ER during Mitosis

Kristien Zaal; Carolyn L. Smith; Roman S. Polishchuk; Nihal Altan; Nelson B. Cole; Jan Ellenberg; Koret Hirschberg; John F. Presley; Theresa H Roberts; Eric D. Siggia; Robert D. Phair; Jennifer Lippincott-Schwartz

Quantitative imaging and photobleaching were used to measure ER/Golgi recycling of GFP-tagged Golgi proteins in interphase cells and to monitor the dissolution and reformation of the Golgi during mitosis. In interphase, recycling occurred every 1.5 hr, and blocking ER egress trapped cycling Golgi enzymes in the ER with loss of Golgi structure. In mitosis, when ER export stops, Golgi proteins redistributed into the ER as shown by quantitative imaging in vivo and immuno-EM. Comparison of the mobilities of Golgi proteins and lipids ruled out the persistence of a separate mitotic Golgi vesicle population and supported the idea that all Golgi components are absorbed into the ER. Moreover, reassembly of the Golgi complex after mitosis failed to occur when ER export was blocked. These results demonstrate that in mitosis the Golgi disperses and reforms through the intermediary of the ER, exploiting constitutive recycling pathways. They thus define a novel paradigm for Golgi genesis and inheritance.


Nature | 2008

The Cl - /H + antiporter ClC-7 is the primary chloride permeation pathway in lysosomes

Austin R. Graves; Patricia K. Curran; Carolyn L. Smith; Joseph A. Mindell

Lysosomes are the stomachs of the cell—terminal organelles on the endocytic pathway where internalized macromolecules are degraded. Containing a wide range of hydrolytic enzymes, lysosomes depend on maintaining acidic luminal pH values for efficient function. Although acidification is mediated by a V-type proton ATPase, a parallel anion pathway is essential to allow bulk proton transport. The molecular identity of this anion transporter remains unknown. Recent results of knockout experiments raise the possibility that ClC-7, a member of the CLC family of anion channels and transporters, is a contributor to this pathway in an osteoclast lysosome-like compartment, with loss of ClC-7 function causing osteopetrosis. Several mammalian members of the CLC family have been characterized in detail; some (including ClC-0, ClC-1 and ClC-2) function as Cl--conducting ion channels, whereas others act as Cl-/H+antiporters (ClC-4 and ClC-5). However, previous attempts at heterologous expression of ClC-7 have failed to yield evidence of functional protein, so it is unclear whether ClC-7 has an important function in lysosomal biology, and also whether this protein functions as a Cl- channel, a Cl-/H+ antiporter, or as something else entirely. Here we directly demonstrate an anion transport pathway in lysosomes that has the defining characteristics of a CLC Cl-/H+ antiporter and show that this transporter is the predominant route for Cl- through the lysosomal membrane. Furthermore, knockdown of ClC-7 expression by short interfering RNA can essentially ablate this lysosomal Cl-/H+ antiport activity and can strongly diminish the ability of lysosomes to acidify in vivo, demonstrating that ClC-7 is a Cl-/H+ antiporter, that it constitutes the major Cl- permeability of lysosomes, and that it is important in lysosomal acidification.


Nature Cell Biology | 2004

Syntabulin is a microtubule-associated protein implicated in syntaxin transport in neurons

Qingning Su; Qian Cai; Claudia Gerwin; Carolyn L. Smith; Zu-Hang Sheng

Different types of cargo vesicles containing presynaptic proteins are transported from the nerve cell body to the nerve terminal, and participate in the formation of active zones. However, the identity of the membranous cargoes and the nature of the motor–cargo interactions remain unsolved. Here, we report the identification of a syntaxin-1-binding protein named syntabulin. Syntabulin attaches syntaxin-containing vesicles to microtubules and migrates with syntaxin within the processes of hippocampal neurons. Knock-down of syntabulin expression with targeted small interfering RNAs (siRNAs) or interference with the syntabulin–syntaxin interaction inhibit attachment of syntaxin-cargo vesicles to microtubules and reduce syntaxin-1 distribution in neuronal processes. Furthermore, conventional kinesin I heavy chain binds to syntabulin and associates with syntabulin-linked syntaxin vesicles in vivo. These findings suggest that syntabulin functions as a linker molecule that attaches syntaxin-cargo vesicles to kinesin I, enabling the transport of syntaxin-1 to neuronal processes.


The Journal of Neuroscience | 2004

Excitotoxic Calcium Overload in a Subpopulation of Mitochondria Triggers Delayed Death in Hippocampal Neurons

Natalia B. Pivovarova; Huy Nguyen; Christine A. Winters; Christine A. Brantner; Carolyn L. Smith; S. Brian Andrews

In neurons, excitotoxic stimulation induces mitochondrial calcium overload and the release of pro-apoptotic proteins, which triggers delayed cell death. The precise mechanisms of apoptogen release, however, remain controversial. To characterize the linkage between mitochondrial calcium load and cell vulnerability, and to test the hypothesis that only a subpopulation of mitochondria damaged by calcium overload releases apoptogens, we have measured directly the concentrations of total Ca (free plus bound) in individual mitochondria and monitored in parallel structural changes and the subcellular localization of pro-apoptotic cytochrome c after NMDA overstimulation in cultured hippocampal neurons. Beyond transient elevation of cytosolic calcium and perturbation of Na+/K+ homeostasis, NMDA stimulation induced dramatic, but mainly reversible, changes in mitochondria, including strong calcium elevation, membrane potential depolarization, and variable swelling. Elevation of matrix Ca in the approximately one-third of mitochondria that were strongly swollen, as well as the absence of swelling when Ca2+ entry was abolished, indicate an essential role for Ca overload. Shortly after NMDA exposure, cytochrome c, normally localized to mitochondria, became diffusely distributed in the cytoplasm, coincident with the appearance of severely swollen mitochondria with ruptured outer membranes; under these conditions, cytochrome c was retained in intact mitochondria, implying that it was released mainly from damaged mitochondria. Consistent with the role of mitochondrial Ca overload, carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone decreased Ca accumulation, prevented cytochrome c release, and was neuroprotective. These results support a mechanism in which delayed excitotoxic death involves apoptogen release from a subpopulation of calcium-overloaded mitochondria, whereas other, undamaged mitochondria maintain normal function.


Current Biology | 2014

Novel Cell Types, Neurosecretory Cells, and Body Plan of the Early-Diverging Metazoan Trichoplax adhaerens

Carolyn L. Smith; Frederique Varoqueaux; Maike Kittelmann; Rita Azzam; Benjamin H. Cooper; Christine A. Winters; Michael Eitel; Dirk Fasshauer; Thomas S. Reese

BACKGROUND Trichoplax adhaerens is the best-known member of the phylum Placozoa, one of the earliest-diverging metazoan phyla. It is a small disk-shaped animal that glides on surfaces in warm oceans to feed on algae. Prior anatomical studies of Trichoplax revealed that it has a simple three-layered organization with four somatic cell types. RESULTS We reinvestigate the cellular organization of Trichoplax using advanced freezing and microscopy techniques to identify localize and count cells. Six somatic cell types are deployed in stereotyped positions. A thick ventral plate, comprising the majority of the cells, includes ciliated epithelial cells, newly identified lipophil cells packed with large lipid granules, and gland cells. Lipophils project deep into the interior, where they alternate with regularly spaced fiber cells whose branches contact all other cell types, including cells of the dorsal and ventral epithelium. Crystal cells, each containing a birefringent crystal, are arrayed around the rim. Gland cells express several proteins typical of neurosecretory cells, and a subset of them, around the rim, also expresses an FMRFamide-like neuropeptide. CONCLUSIONS Structural analysis of Trichoplax with significantly improved techniques provides an advance in understanding its cell types and their distributions. We find two previously undetected cell types, lipohil and crystal cells, and an organized body plan in which different cell types are arranged in distinct patterns. The composition of gland cells suggests that they are neurosecretory cells and could control locomotor and feeding behavior.


Current Opinion in Neurobiology | 1997

Insights into secretory and endocytic membrane traffic using green fluorescent protein chimeras

Jennifer Lippincott-Schwartz; Carolyn L. Smith

Green fluorescent fusion proteins, which can be visualized in the unperturbed environment of a living cell, have become important reporter molecules for studying protein localization and trafficking within secretory and endocytic membranes of living cells. They have been used in a wide variety of applications, including time-lapse imaging, double-labeling and photobleach experiments. Results from such work are clarifying the steps involved in the formation, translocation and fusion of transport intermediates, are defining the roles for microtubules in membrane transport, and are providing insights into the mechanisms of protein retention and localization within organelles. In so doing, they have changed our thinking about the temporal and spatial relationships between subcellular membrane structures and the morphogenesis of secretory and endocytic organelles.

Collaboration


Dive into the Carolyn L. Smith's collaboration.

Top Co-Authors

Avatar

Thomas S. Reese

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Richard J. Youle

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Christine A. Winters

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Natalia B. Pivovarova

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Amotz Nechushtan

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brigitte Gaume

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Christine A. Brantner

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge