Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carolyn Y. Ho is active.

Publication


Featured researches published by Carolyn Y. Ho.


The New England Journal of Medicine | 2012

Truncations of Titin Causing Dilated Cardiomyopathy

Daniel S. Herman; Lien Lam; Libin Wang; Polakit Teekakirikul; Danos C. Christodoulou; Lauren Conner; Steven R. DePalma; Barbara McDonough; Elizabeth Sparks; Debbie Lin Teodorescu; Allison L. Cirino; Nicholas R. Banner; Dudley J. Pennell; Sharon Graw; Marco Merlo; Gianfranco Sinagra; J. Martijn Bos; Michael J. Ackerman; Richard N. Mitchell; Charles E. Murry; Neal K. Lakdawala; Carolyn Y. Ho; Stuart A. Cook; Luisa Mestroni; Christine E. Seidman

BACKGROUND Dilated cardiomyopathy and hypertrophic cardiomyopathy arise from mutations in many genes. TTN, the gene encoding the sarcomere protein titin, has been insufficiently analyzed for cardiomyopathy mutations because of its enormous size. METHODS We analyzed TTN in 312 subjects with dilated cardiomyopathy, 231 subjects with hypertrophic cardiomyopathy, and 249 controls by using next-generation or dideoxy sequencing. We evaluated deleterious variants for cosegregation in families and assessed clinical characteristics. RESULTS We identified 72 unique mutations (25 nonsense, 23 frameshift, 23 splicing, and 1 large tandem insertion) that altered full-length titin. Among subjects studied by means of next-generation sequencing, the frequency of TTN mutations was significantly higher among subjects with dilated cardiomyopathy (54 of 203 [27%]) than among subjects with hypertrophic cardiomyopathy (3 of 231 [1%], P=3×10(-16)) or controls (7 of 249 [3%], P=9×10(-14)). TTN mutations cosegregated with dilated cardiomyopathy in families (combined lod score, 11.1) with high (>95%) observed penetrance after the age of 40 years. Mutations associated with dilated cardiomyopathy were overrepresented in the titin A-band but were absent from the Z-disk and M-band regions of titin (P≤0.01 for all comparisons). Overall, the rates of cardiac outcomes were similar in subjects with and those without TTN mutations, but adverse events occurred earlier in male mutation carriers than in female carriers (P=4×10(-5)). CONCLUSIONS TTN truncating mutations are a common cause of dilated cardiomyopathy, occurring in approximately 25% of familial cases of idiopathic dilated cardiomyopathy and in 18% of sporadic cases. Incorporation of sequencing approaches that detect TTN truncations into genetic testing for dilated cardiomyopathy should substantially increase test sensitivity, thereby allowing earlier diagnosis and therapeutic intervention for many patients with dilated cardiomyopathy. Defining the functional effects of TTN truncating mutations should improve our understanding of the pathophysiology of dilated cardiomyopathy. (Funded by the Howard Hughes Medical Institute and others.).


The New England Journal of Medicine | 2010

Myocardial Fibrosis as an Early Manifestation of Hypertrophic Cardiomyopathy

Carolyn Y. Ho; Begoña López; Otavio R. Coelho-Filho; Neal K. Lakdawala; Allison L. Cirino; Petr Jarolim; Raymond Y. Kwong; Arantxa González; Steven D. Colan; Jonathan G. Seidman; Javier Díez; Christine E. Seidman

BACKGROUND Myocardial fibrosis is a hallmark of hypertrophic cardiomyopathy and a proposed substrate for arrhythmias and heart failure. In animal models, profibrotic genetic pathways are activated early, before hypertrophic remodeling. Data showing early profibrotic responses to sarcomere-gene mutations in patients with hypertrophic cardiomyopathy are lacking. METHODS We used echocardiography, cardiac magnetic resonance imaging (MRI), and serum biomarkers of collagen metabolism, hemodynamic stress, and myocardial injury to evaluate subjects with hypertrophic cardiomyopathy and a confirmed genotype. RESULTS The study involved 38 subjects with pathogenic sarcomere mutations and overt hypertrophic cardiomyopathy, 39 subjects with mutations but no left ventricular hypertrophy, and 30 controls who did not have mutations. Levels of serum C-terminal propeptide of type I procollagen (PICP) were significantly higher in mutation carriers without left ventricular hypertrophy and in subjects with overt hypertrophic cardiomyopathy than in controls (31% and 69% higher, respectively; P<0.001). The ratio of PICP to C-terminal telopeptide of type I collagen was increased only in subjects with overt hypertrophic cardiomyopathy, suggesting that collagen synthesis exceeds degradation. Cardiac MRI studies showed late gadolinium enhancement, indicating myocardial fibrosis, in 71% of subjects with overt hypertrophic cardiomyopathy but in none of the mutation carriers without left ventricular hypertrophy. CONCLUSIONS Elevated levels of serum PICP indicated increased myocardial collagen synthesis in sarcomere-mutation carriers without overt disease. This profibrotic state preceded the development of left ventricular hypertrophy or fibrosis visible on MRI. (Funded by the National Institutes of Health and others.)


Circulation | 2002

Assessment of Diastolic Function With Doppler Tissue Imaging to Predict Genotype in Preclinical Hypertrophic Cardiomyopathy

Carolyn Y. Ho; Nancy K. Sweitzer; Barbara McDonough; Barry J. Maron; Susan A. Casey; Jonathan G. Seidman; Christine E. Seidman; Scott D. Solomon

Background—Unexplained left ventricular hypertrophy (LVH) is considered diagnostic of hypertrophic cardiomyopathy (HCM) but fails to identify all genetically affected individuals. Altered diastolic function has been hypothesized to represent an earlier manifestation of HCM before the development of LVH; however, data regarding the clinical utility of imaging techniques that assess this parameter are limited. Methods and Results—Echocardiographic studies including Doppler tissue imaging (DTI) were performed in a genotyped HCM population with &bgr;-myosin heavy chain (&bgr; -MHC) mutations. Genotype (+) individuals with LVH (G+/LVH+; n=18) and genotype (+) individuals without LVH (G+/LVH−; n=18) were compared with normal control subjects (n=36). Left ventricular ejection fraction (EF) was significantly higher in both genotype (+) groups (75±5% and 71±6%, respectively, versus 64± 5% in control subjects;P <0.0001). Mean early diastolic myocardial velocities (Ea) were significantly lower in both genotype (+) subgroups, irrespective of LVH (P <0.02). However, there was substantial overlap in Ea velocities between the G+/LVH− and control groups. An Ea velocity of ≤13.5 cm/s had 86% specificity and 75% sensitivity for identifying genotype-positive subjects. The combination of EF ≥68% and Ea velocity <15 cm/s was 100% specific and 44% sensitive in predicting affected genotype. Conclusions—Abnormalities of diastolic function assessed by Doppler tissue imaging precede the development of LVH in individuals with HCM caused by &bgr; -MHC mutations. Although Ea velocity alone was not sufficiently sensitive as a sole diagnostic criterion, the combination of Ea velocity and EF was highly predictive of affected genotype in individuals without overt manifestations of HCM.


Circulation | 2006

A Clinician’s Guide to Tissue Doppler Imaging

Carolyn Y. Ho; Scott D. Solomon

Tissue Doppler imaging (TDI) is a relatively new echocardiographic technique that uses Doppler principles to measure the velocity of myocardial motion. We describe the principles behind and the clinical utility of TDI. Doppler echocardiography relies on detection of the shift in frequency of ultrasound signals reflected from moving objects. With this principle, conventional Doppler techniques assess the velocity of blood flow by measuring high-frequency, low-amplitude signals from small, fast-moving blood cells. In TDI, the same Doppler principles are used to quantify the higher-amplitude, lower-velocity signals of myocardial tissue motion. There are important limitations to TD interrogation. As with all Doppler techniques, TDI measures only the vector of motion that is parallel to the direction of the ultrasound beam. In addition, TDI measures absolute tissue velocity and is unable to discriminate passive motion (related to translation or tethering) from active motion (fiber shortening or lengthening). The emerging technology of Doppler strain imaging provides a means to differentiate true contractility from passive myocardial motion by looking at relative changes in tissue velocity. TDI can be performed in pulsed-wave and color modes. Pulsed-wave TDI is used to measure peak myocardial velocities and is particularly well suited to the measurement of long-axis ventricular motion because the longitudinally oriented endocardial fibers are most parallel to the ultrasound beam in the apical views. Because the apex remains relatively stationary throughout the cardiac cycle, mitral annular motion is a good surrogate measure of overall longitudinal left ventricular (LV) contraction and relaxation.1 To measure longitudinal myocardial velocities, the sample volume is placed in the ventricular myocardium immediately adjacent to the mitral annulus. The cardiac …


Journal of the American College of Cardiology | 2010

Clinical Features and Outcome of Hypertrophic Cardiomyopathy Associated With Triple Sarcomere Protein Gene Mutations

Francesca Girolami; Carolyn Y. Ho; Christopher Semsarian; Massimo Baldi; Melissa L. Will; Katia Baldini; Francesca Torricelli; Laura Yeates; Franco Cecchi; Michael J. Ackerman; Iacopo Olivotto

OBJECTIVES The aim of this study was to describe the clinical profile associated with triple sarcomere gene mutations in a large hypertrophic cardiomyopathy (HCM) cohort. BACKGROUND In patients with HCM, double or compound sarcomere gene mutation heterozygosity might be associated with earlier disease onset and more severe outcome. The occurrence of triple mutations has not been reported. METHODS A total of 488 unrelated index HCM patients underwent screening for myofilament gene mutations by direct deoxyribonucleic acid sequencing of 8 genes, including myosin binding protein C (MYBPC3), beta-myosin heavy chain (MYH7), regulatory and essential light chains (MYL2, MYL3), troponin-T (TNNT2), troponin-I (TNNI3), alpha-tropomyosin (TPM1), and actin (ACTC). RESULTS Of the 488 index patients, 4 (0.8%) harbored triple mutations, as follows: MYH7-R869H, MYBPC3-E258K, and TNNI3-A86fs in a 32-year-old woman; MYH7-R723C, MYH7-E1455X, and MYBPC3-E165D in a 46-year old man; MYH7-R869H, MYBPC3-K1065fs, and MYBPC3-P371R in a 45-year old woman; and MYH7-R1079Q, MYBPC3-Q969X, and MYBPC3-R668H in a 50-year old woman. One had a history of resuscitated cardiac arrest, and 3 had significant risk factors for sudden cardiac death, prompting the insertion of an implantable cardioverter-defibrillator in all, with appropriate shocks in 2 patients. Moreover, 3 of 4 patients had a severe phenotype with progression to end-stage HCM by the fourth decade, requiring cardiac transplantation (n=1) or biventricular pacing (n=2). The fourth patient, however, had clinically mild disease. CONCLUSIONS Hypertrophic cardiomyopathy caused by triple sarcomere gene mutations was rare but conferred a remarkably increased risk of end-stage progression and ventricular arrhythmias, supporting an association between multiple sarcomere defects and adverse outcome. Comprehensive genetic testing might provide important insights to risk stratification and potentially indicate the need for differential surveillance strategies based on genotype.


JAMA | 2009

Clinical Outcome and Phenotypic Expression in LAMP2 Cardiomyopathy

Barry J. Maron; William C. Roberts; Michael Arad; Tammy S. Haas; Paolo Spirito; Gregory B. Wright; Adrian K. Almquist; Jeanne M. Baffa; J. Philip Saul; Carolyn Y. Ho; Jonathan G. Seidman; Christine E. Seidman

CONTEXT Mutations in X-linked lysosome-associated membrane protein gene (LAMP2; Danon disease) produce a cardiomyopathy in young patients that clinically mimics severe hypertrophic cardiomyopathy (HCM) due to sarcomere protein mutations. However, the natural history and phenotypic expression of this newly recognized disease is incompletely resolved and its identification may have important clinical implications. OBJECTIVES To determine the clinical consequences, outcome, and phenotypic expression of LAMP2 cardiomyopathy associated with diagnostic and management strategies. DESIGN, SETTING, AND PATIENTS Clinical course and outcome were assessed prospectively in 7 young patients (6 boys) with defined LAMP2 mutations from the time of diagnosis (age 7-17 years; median, 14 years) to October 2008. Phenotypic expression of this disease was assessed both clinically and at autopsy. MAIN OUTCOME MEASURES Progressive heart failure, cardiac death, and transplant. RESULTS Over a mean (SD) follow-up of 8.6 (2.6) years, and by age 14 to 24 years, the study patients developed left ventricular systolic dysfunction (mean [SD] ejection fraction, 25% [7%]) and cavity enlargement, as well as particularly adverse clinical consequences, including progressive refractory heart failure and death (n = 4), sudden death (n = 1), aborted cardiac arrest (n = 1), or heart transplantation (n = 1). Left ventricular hypertrophy was particularly marked (maximum thickness, 29-65 mm; mean [SD], 44 [15] mm), including 2 patients with massive ventricular septal thickness of 60 mm and 65 mm at ages 23 and 14 years, respectively. In 6 patients, a ventricular pre-excitation pattern at study entry was associated with markedly increased voltages of R-wave or S-wave (15-145 mm; mean [SD], 69 [39] mm), and deeply inverted T-waves. Autopsy findings included a combination of histopathologic features that were consistent with a lysosomal storage disease (ie, clusters of vacuolated myocytes) but also typical of HCM due to sarcomere protein mutations (ie, myocyte disarray, small vessel disease, myocardial scarring). CONCLUSIONS LAMP2 cardiomyopathy is a profound disease process characterized by progressive clinical deterioration leading rapidly to cardiac death in young patients (<25 years). These observations underscore the importance of timely molecular diagnosis for predicting prognosis and early consideration of heart transplantation.


Circulation | 2000

Homozygous Mutation in Cardiac Troponin T Implications for Hypertrophic Cardiomyopathy

Carolyn Y. Ho; Harry M. Lever; Roman W. DeSanctis; Carol Farver; Jonathan G. Seidman; Christine E. Seidman

BackgroundMutations in the gene that encode cardiac troponin T (cTnT) account for ≈15% of cases of familial hypertrophic cardiomyopathy (HCM). These mutations are associated with a particularly severe form of HCM characterized by a high incidence of sudden death and a poor overall prognosis, despite subclinical or mild left ventricular hypertrophy. Methods and ResultsWe evaluated a family with HCM and multiple occurrences of sudden death in children. DNA samples were isolated from peripheral blood or paraffin-embedded tissue, and all protein-encoding exons of the cTnT gene were sequenced. A mutation was identified in exon 11 and is predicted to substitute a phenylalanine-for-serine mutation at residue 179 (Ser179Phe) in cTnT. Both parents and 3 of 4 surviving and clinically unaffected children were heterozygous for this mutation; another clinically unaffected child did not carry the mutation. Genetic analysis of DNA from a child who died suddenly at age 17 years demonstrated he was homozygous for this mutation. A review of his echocardiogram revealed profound left and right ventricular hypertrophy. ConclusionsAn homozygous Ser179Phe mutation in cTnT causes a severe form of HCM characterized by striking morphological abnormalities and juvenile lethality. In contrast, the natural history of the heterozygous mutation is benign. These studies emphasize the relevance of genetic diagnosis in hypertrophic cardiomyopathy and provide a new perspective on the clinical consequences of troponin T mutations.


Circulation | 2005

Gene Mutations in Apical Hypertrophic Cardiomyopathy

Michael Arad; Manual Penas-Lado; Lorenzo Monserrat; Barry J. Maron; Mark V. Sherrid; Carolyn Y. Ho; Scott Barr; Ahmad Karim; Timothy M. Olson; Mitsohiro Kamisago; Jonathan G. Seidman; Christine E. Seidman

Background— Nonobstructive hypertrophy localized to the cardiac apex is an uncommon morphological variant of hypertrophic cardiomyopathy (HCM) that often is further distinguished by distinct giant negative T waves and a benign clinical course. The genetic relationship between HCM with typical hypertrophic morphology versus isolated apical hypertrophy is incompletely understood. Methods and Results— Genetic cause was investigated in 15 probands with apical hypertrophy by DNA sequence analyses of 9 sarcomere protein genes and 3 other genes (GLA, PRKAG2, and LAMP2) implicated in idiopathic cardiac hypertrophy. Six sarcomere gene mutations were found in 7 samples; no samples contained mutations in GLA, PRKAG2, or LAMP2. Clinical evaluations demonstrated familial apical HCM in 4 probands, and in 3 probands disease-causing mutations were identified. Two families shared a cardiac actin Glu101Lys missense mutation; all members of both families with clinical manifestations of HCM (n=16) had apical hypertrophy. An essential light chain missense mutation Met149Val caused apical or midventricular segment HCM in another proband and 5 family members, but 6 other affected relatives had typical HCM morphologies. No other sarcomere gene mutations identified in the remaining probands caused apical HCM in other family members. Conclusions— Sarcomere protein gene mutations that cause apical hypertrophy rather than more common HCM morphologies reflect interactions among genetic etiology, background modifier genes, and/or hemodynamic factors. Only a limited number of sarcomere gene defects (eg, cardiac actin Glu101Lys) consistently produce apical HCM.


Circulation | 2006

A Contemporary Approach to Hypertrophic Cardiomyopathy

Carolyn Y. Ho; Christine E. Seidman

A previously healthy 32-year-old female undergoes evaluation after a syncopal episode. Physical examination reveals a systolic ejection murmur. Echocardiography demonstrates a vigorous LV with marked asymmetric septal hypertrophy, systolic anterior motion of the mitral valve, and a 50–mm Hg outflow tract gradient. Family history is notable for unexpected death in 4 paternal family members. She has 2 children (Figure 1A). Figure 1. A, HCM is a genetic cardiovascular disease. This family shows autosomal dominant inheritance with &50% of the family affected and equal numbers of affected male (▪) and female (•) family members. The case patient is indicated by an arrow. Deceased individuals are indicated by a diagonal slash (all died suddenly). B, DNA sequence analysis can identify sarcomere mutations that cause HCM. Top, The normal sequence of a portion of the cardiac troponin T gene is displayed with a triplet codon, TCC, encoding serine present. Bottom, DNA sequence obtained from a patient with HCM. The normal sequence is present on the allele inherited from the unaffected parent; the other allele shows a single base-pair substitution of a thymidine residue for the normal cytosine residue. This triplet codon, TTC, encodes phenylalanine and results in the substitution of a phenylalanine residue for the normal serine residue at amino acid position 179. The prevalence of unexplained left ventricular hypertrophy (LVH) in the general population is estimated to be 1 in 500.1,2 Hypertrophic cardiomyopathy (HCM) caused by sarcomere mutations may account for up to 60% of unexplained LVH, making HCM the most common genetic cardiovascular disorder.3–5 Accurate diagnosis of HCM is important for appropriate management of major HCM comorbidities, including atrial fibrillation, stroke, heart failure, and sudden cardiac death (SCD).6,7 HCM typically is diagnosed by unexplained LVH on echocardiography. Age of onset of LVH ranges from early childhood to …


Circulation-cardiovascular Imaging | 2013

T1 measurements identify extracellular volume expansion in hypertrophic cardiomyopathy sarcomere mutation carriers with and without left ventricular hypertrophy.

Carolyn Y. Ho; Siddique Abbasi; Tomas G. Neilan; Ravi V. Shah; Yucheng Chen; Bobak Heydari; Allison L. Cirino; Neal K. Lakdawala; E. John Orav; Arantxa González; Begoña López; Javier Díez; Michael Jerosch-Herold; Raymond Y. Kwong

Background— Myocardial fibrosis is a hallmark of hypertrophic cardiomyopathy (HCM) and a potential substrate for arrhythmias and heart failure. Sarcomere mutations seem to induce profibrotic changes before left ventricular hypertrophy (LVH) develops. To further evaluate these processes, we used cardiac magnetic resonance with T1 measurements on a genotyped HCM population to quantify myocardial extracellular volume (ECV). Methods and Results— Sarcomere mutation carriers with LVH (G+/LVH+, n=37) and without LVH (G+/LVH−, n=29), patients with HCM without mutations (sarcomere-negative HCM, n=11), and healthy controls (n=11) underwent contrast cardiac magnetic resonance, measuring T1 times pre- and postgadolinium infusion. Concurrent echocardiography and serum biomarkers of collagen synthesis, hemodynamic stress, and myocardial injury were also available in a subset. Compared with controls, ECV was increased in patients with overt HCM, as well as G+/LVH− mutation carriers (ECV=0.36±0.01, 0.33±0.01, 0.27±0.01 in G+/LVH+, G+/LVH−, controls, respectively; P⩽0.001 for all comparisons). ECV correlated with N-terminal probrain natriuretic peptide levels (r=0.58; P<0.001) and global E’ velocity (r=−0.48; P<0.001). Late gadolinium enhancement was present in >60% of overt patients with HCM but absent from G+/LVH− subjects. Both ECV and late gadolinium enhancement were more extensive in sarcomeric HCM than sarcomere-negative HCM. Conclusions— Myocardial ECV is increased in HCM sarcomere mutation carriers even in the absence of LVH. These data provide additional support that fibrotic remodeling is triggered early in disease pathogenesis. Quantifying ECV may help characterize the development of myocardial fibrosis in HCM and ultimately assist in developing novel disease-modifying therapy, targeting interstitial fibrosis.

Collaboration


Dive into the Carolyn Y. Ho's collaboration.

Top Co-Authors

Avatar

Allison L. Cirino

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Christine E. Seidman

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Neal K. Lakdawala

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Steven D. Colan

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Michelle Michels

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Calum A. MacRae

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

David A. Bluemke

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge