Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carrie C. Veilleux is active.

Publication


Featured researches published by Carrie C. Veilleux.


American Journal of Primatology | 2009

Opsin gene polymorphism predicts trichromacy in a cathemeral lemur

Carrie C. Veilleux; Deborah A. Bolnick

Recent research has identified polymorphic trichromacy in three diurnal strepsirrhines: Coquerels sifaka (Propithecus coquereli), black and white ruffed lemurs (Varecia variegata), and red ruffed lemurs (V. rubra). Current hypotheses suggest that the transitions to diurnality experienced by Propithecus and Varecia were necessary precursors to their independent acquisitions of trichromacy. Accordingly, cathemeral lemurs are thought to lack the M/L opsin gene polymorphism necessary for trichromacy. In this study, the M/L opsin gene was sequenced in ten cathemeral blue‐eyed black lemurs (Eulemur macaco flavifrons). This analysis identified a polymorphism identical to that of other trichromatic strepsirrhines at the critical amino acid position 285 in exon 5 of the M/L opsin gene. Thus, polymorphic trichromacy is likely present in at least one cathemeral Eulemur species, suggesting that strict diurnality is not necessary for trichromacy. The presence of trichromacy in E. m. flavifrons suggests that a re‐evaluation of current hypotheses regarding the evolution of strepsirrhine trichromacy may be necessary. Although the M/L opsin polymorphism may have been independently acquired three times in the lemurid–indriid clade, the distribution of opsin alleles in lemurids and indriids may also be consistent with a common origin of trichromacy in the last common ancestor of either the lemurids or the lemurid–indriid clade. Am. J. Primatol. 71:86–90, 2009.


Brain Behavior and Evolution | 2014

Visual Acuity in Mammals: Effects of Eye Size and Ecology

Carrie C. Veilleux; E. Christopher Kirk

Previous comparative research has attributed interspecific variation in eye size among mammals to selection related to visual acuity. Mammalian species have also been hypothesized to differ in visual acuity partly as a result of differences in ecology. While a number of prior studies have explored ecological and phylogenetic effects on eye shape, a broad comparative analysis of the relationships between visual acuity, eye size and ecology in mammals is currently lacking. Here we use phylogenetic comparative methods to explore these relationships in a taxonomically and ecologically diverse sample of 91 mammal species. These data confirm that axial eye length and visual acuity are significantly positively correlated in mammals. This relationship conforms to expectations based on theoretical optics and prior analyses of smaller comparative samples. Our data also demonstrate that higher visual acuity in mammals is associated with: (1) diurnality and (2) predatory habits once the effects of eye size and phylogeny have been statistically controlled. These results suggest that interspecific variation in mammalian visual acuity is the result of a complex interplay between phylogenetic history, visual anatomy and ecology.


Molecular Biology and Evolution | 2013

Nocturnal Light Environments Influence Color Vision and Signatures of Selection on the OPN1SW Opsin Gene in Nocturnal Lemurs

Carrie C. Veilleux; Edward E. Louis; Deborah A. Bolnick

Although loss of short-wavelength-sensitive (SWS) cones and dichromatic color vision in mammals has traditionally been linked to a nocturnal lifestyle, recent studies have identified variation in selective pressure for the maintenance of the OPN1SW opsin gene (and thus, potentially dichromacy) among nocturnal mammalian lineages. These studies hypothesize that purifying selection to retain SWS cones may be associated with a selective advantage for nocturnal color vision under certain ecological conditions. In this study, we explore the effect of nocturnal light environment on OPN1SW opsin gene evolution in a diverse sample of nocturnal lemurs (106 individuals, 19 species, and 5 genera). Using both phylogenetic and population genetic approaches, we test whether species from closed canopy rainforests, which are impoverished in short-wavelength light, have experienced relaxed selection compared with species from open canopy forests. We identify clear signatures of differential selection on OPN1SW by habitat type. Our results suggest that open canopy species generally experience strong purifying selection to maintain SWS cones. In contrast, closed canopy species experience weaker purifying selection or a relaxation of selection on OPN1SW. We also found evidence of nonfunctional OPN1SW genes in all Phaner species and in Cheirogaleus medius, implying at least three independent losses of SWS cones in cheirogaleids. Our results suggest that the evolution of color vision in nocturnal lemurs has been influenced by nocturnal light environment.


The Journal of Experimental Biology | 2012

Nocturnal light environments and species ecology: implications for nocturnal color vision in forests

Carrie C. Veilleux

SUMMARY Although variation in the color of light in terrestrial diurnal and twilight environments has been well documented, relatively little work has examined the color of light in nocturnal habitats. Understanding the range and sources of variation in nocturnal light environments has important implications for nocturnal vision, particularly following recent discoveries of nocturnal color vision. In this study, we measured nocturnal irradiance in a dry forest/woodland and a rainforest in Madagascar over 34 nights. We found that a simple linear model including the additive effects of lunar altitude, lunar phase and canopy openness successfully predicted total irradiance flux measurements across 242 clear sky measurements (r=0.85, P<0.0001). However, the relationship between these variables and spectral irradiance was more complex, as interactions between lunar altitude, lunar phase and canopy openness were also important predictors of spectral variation. Further, in contrast to diurnal conditions, nocturnal forests and woodlands share a yellow-green-dominant light environment with peak flux at 560 nm. To explore how nocturnal light environments influence nocturnal vision, we compared photoreceptor spectral tuning, habitat preference and diet in 32 nocturnal mammals. In many species, long-wavelength-sensitive cone spectral sensitivity matched the peak flux present in nocturnal forests and woodlands, suggesting a possible adaptation to maximize photon absorption at night. Further, controlling for phylogeny, we found that fruit/flower consumption significantly predicted short-wavelength-sensitive cone spectral tuning in nocturnal mammals (P=0.002). These results suggest that variation in nocturnal light environments and species ecology together influence cone spectral tuning and color vision in nocturnal mammals.


American Journal of Primatology | 2009

Visual acuity in the cathemeral strepsirrhine Eulemur macaco flavifrons.

Carrie C. Veilleux; E. Christopher Kirk

Studies of visual acuity in primates have shown that diurnal haplorhines have higher acuity (30–75 cycles per degree (c/deg)) than most other mammals. However, relatively little is known about visual acuity in non‐haplorhine primates, and published estimates are only available for four strepsirrhine genera (Microcebus, Otolemur, Galago, and Lemur). We present here the first measurements of visual acuity in a cathemeral strepsirrhine species, the blue‐eyed black lemur (Eulemur macaco flavifrons). Acuity in two subjects, a 3‐year‐old male and a 16‐year‐old female, was assessed behaviorally using a two‐alternative forced choice discrimination task. Visual stimuli consisted of high contrast square wave gratings of seven spatial frequencies. Acuity threshold was determined using a 70% correct response criterion. Results indicate a maximum visual acuity of 5.1 c/deg for the female (1718 trials) and 3.8 c/deg for the male (846 trials). These values for E. macaco are slightly lower than those reported for diurnal Lemur catta, and are generally comparable to those reported for nocturnal Microcebus murinus and Otolemur crassicaudatus. To examine ecological sources of variation in primate visual acuity, we also calculated maximum theoretical acuity for Cheirogaleus medius (2.8 c/deg) and Tarsius syrichta (8.9 c/deg) using published data on retinal ganglion cell density and eye morphology. These data suggest that visual acuity in primates may be influenced by activity pattern, diet, and phylogenetic history. In particular, the relatively high acuity of T. syrichta and Galago senegalensis suggests that visual predation may be an important selective factor favoring high visual acuity in primates. Am. J. Primatol. 71:343–352, 2009.


Anatomical Record-advances in Integrative Anatomy and Evolutionary Biology | 2011

Effects of Habitat Light Intensity on Mammalian Eye Shape

Carrie C. Veilleux; Rebecca J. Lewis

Many aspects of mammalian visual anatomy vary with activity pattern, reflecting the divergent selective pressures imposed by low light and high light visual environments. However, ambient light intensity can also differ substantially between and within habitats due to differences in foliage density. We explored the effects of interhabitat and intrahabitat variation in light intensity on mammalian visual anatomy. Data on relative cornea size, activity pattern, and habitat type were collected from the literature for 209 terrestrial mammal species. In general, mammalian relative cornea size significantly varied by habitat type. In within‐order and across‐mammal analyses, diurnal and cathemeral mammals from forested habitats exhibited relatively larger corneas than species from more open habitats, reflecting an adaptation to increase visual sensitivity in forest species. However, in all analyses, we found no habitat‐type effect in nocturnal species, suggesting that nocturnal mammals may experience selection to maximize visual sensitivity across all habitats. We also examined whether vertical strata usage affected relative cornea size in anthropoid primates. In most analyses, species occupying lower levels of forests and woodlands did not exhibit relatively larger corneas than species utilizing higher levels. Thus, unlike differences in intensity between habitat types, differences in light intensity between vertical forest strata do not appear to exert a strong selective pressure on visual morphology. These results suggest that terrestrial mammal visual systems reflect specializations for habitat variation in light intensity, and that habitat type as well as activity pattern have influenced mammalian visual evolution. Anat Rec, 2011.


International Journal of Primatology | 2014

Opsin Genes and Visual Ecology in a Nocturnal Folivorous Lemur

Carrie C. Veilleux; Rachel L. Jacobs; Edward E. Louis; Deborah A. Bolnick

Primate color vision has traditionally been examined in the context of diurnal activity, but recent genetic and ecological studies suggest that color vision plays a role in nocturnal primate behavior and ecology as well. In this study, we united molecular analyses of cone visual pigment (opsin) genes with visual modeling analyses of food items to explore the evolution of color vision in the folivorous woolly lemur (genus Avahi). Previous studies have shown that leaf quality, e.g., protein content, leaf toughness, and protein/toughness ratio, is significantly correlated with green-red and blue-yellow chromatic differences, suggesting a potential role of color in leaf discrimination in Avahi, and, consequently, a potential adaptive advantage to color vision in this taxon. Phylogenetic selection tests determined that the strength of selection on the SWS1 opsin gene to retain blue-sensitive SWS cones did not significantly differ in Avahi compared to day-active primates. Genotyping of the M/LWS opsin gene in 60 individuals from nine species found that the 558-nm-sensitive (red-sensitive) allele is conserved across all Avahi. Finally, we measured spectral reflectance from five species of young leaves consumed by Avahi and background foliage in Ranomafana National Park and modeled performance of possible S and M/L pigment pairs for detecting these food items under different nocturnal illuminations (e.g. twilight, moonlight). We found that the observed cone pigment pair in Avahi was optimally tuned for color-based detection of young green leaves in all nocturnal light environments, suggesting a potential adaptive role of nocturnal color vision in selection for dichromacy in this genus.


Scientific Reports | 2016

Group benefit associated with polymorphic trichromacy in a Malagasy primate (Propithecus verreauxi)

Carrie C. Veilleux; Clara J. Scarry; Anthony Di Fiore; E. Christopher Kirk; Deborah A. Bolnick; Rebecca J. Lewis

In some primate lineages, polymorphisms in the X-linked M/LWS opsin gene have produced intraspecific variation in color vision. In these species, heterozygous females exhibit trichromacy, while males and homozygous females exhibit dichromacy. The evolutionary persistence of these polymorphisms suggests that balancing selection maintains color vision variation, possibly through a ‘trichromat advantage’ in detecting yellow/orange/red foods against foliage. We identified genetic evidence of polymorphic trichromacy in a population of Verreaux’s sifaka (Propithecus verreauxi) at Kirindy Mitea National Park in Madagascar, and explored effects of color vision on reproductive success and feeding behavior using nine years of morphological, demographic, and feeding data. We found that trichromats and dichromats residing in social groups with trichromats exhibit higher body mass indices than individuals in dichromat-only groups. Additionally, individuals in a trichromat social group devoted significantly more time to fruit feeding and had longer fruit feeding bouts than individuals in dichromat-only groups. We hypothesize that, due to small, cohesive sifaka social groups, a trichromat advantage in detecting productive fruit patches during the energetically stressful dry season also benefits dichromats in a trichromat’s group. Our results offer the first support for the ‘mutual benefit of association’ hypothesis regarding the maintenance of polymorphic trichromacy in primates.


American Journal of Physical Anthropology | 2016

Potential arms race in the coevolution of primates and angiosperms: brazzein sweet proteins and gorilla taste receptors

Elaine E. Guevara; Carrie C. Veilleux; Kristin Saltonstall; Adalgisa Caccone; Nicholas I. Mundy; Brenda J. Bradley


The 86th Annual Meeting of the American Association of Physical Anthropologists, New Orleans | 2017

Effects of Agricultural Transitions on the Evolution of Human Sensory Systems

Carrie C. Veilleux; Eva C Garrett; Richard J. Bankoff; Nathaniel J. Dominy; George H. Perry; Amanda D. Melin

Collaboration


Dive into the Carrie C. Veilleux's collaboration.

Top Co-Authors

Avatar

Deborah A. Bolnick

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

E. Christopher Kirk

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Rebecca J. Lewis

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Anthony Di Fiore

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amanda D. Melin

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Brenda J. Bradley

George Washington University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

George H. Perry

Pennsylvania State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge