Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carrie E. McCurdy is active.

Publication


Featured researches published by Carrie E. McCurdy.


Journal of Clinical Investigation | 2009

Maternal high-fat diet triggers lipotoxicity in the fetal livers of nonhuman primates

Carrie E. McCurdy; Jacalyn M. Bishop; Sarah M. Williams; Bernadette E. Grayson; M. Susan Smith; Jacob E. Friedman; Kevin L. Grove

Maternal obesity is thought to increase the offsprings risk of juvenile obesity and metabolic diseases; however, the mechanism(s) whereby excess maternal nutrition affects fetal development remain poorly understood. Here, we investigated in nonhuman primates the effect of chronic high-fat diet (HFD) on the development of fetal metabolic systems. We found that fetal offspring from both lean and obese mothers chronically consuming a HFD had a 3-fold increase in liver triglycerides (TGs). In addition, fetal offspring from HFD-fed mothers (O-HFD) showed increased evidence of hepatic oxidative stress early in the third trimester, consistent with the development of nonalcoholic fatty liver disease (NAFLD). O-HFD animals also exhibited elevated hepatic expression of gluconeogenic enzymes and transcription factors. Furthermore, fetal glycerol levels were 2-fold higher in O-HFD animals than in control fetal offspring and correlated with maternal levels. The increased fetal hepatic TG levels persisted at P180, concurrent with a 2-fold increase in percent body fat. Importantly, reversing the maternal HFD to a low-fat diet during a subsequent pregnancy improved fetal hepatic TG levels and partially normalized gluconeogenic enzyme expression, without changing maternal body weight. These results suggest that a developing fetus is highly vulnerable to excess lipids, independent of maternal diabetes and/or obesity, and that exposure to this may increase the risk of pediatric NAFLD.


Biochemical Journal | 2011

Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation.

Agnieszka A. Kendrick; Mahua Choudhury; Shaikh Mizanoor Rahman; Carrie E. McCurdy; Marisa W. Friederich; Johan L.K. Van Hove; Peter A. Watson; Nicholas Birdsey; Jianjun Bao; David Gius; Michael N. Sack; Enxuan Jing; C. Ronald Kahn; Jacob E. Friedman; Karen R. Jonscher

Acetylation has recently emerged as an important mechanism for controlling a broad array of proteins mediating cellular adaptation to metabolic fuels. Acetylation is governed, in part, by SIRTs (sirtuins), class III NAD(+)-dependent deacetylases that regulate lipid and glucose metabolism in liver during fasting and aging. However, the role of acetylation or SIRTs in pathogenic hepatic fuel metabolism under nutrient excess is unknown. In the present study, we isolated acetylated proteins from total liver proteome and observed 193 preferentially acetylated proteins in mice fed on an HFD (high-fat diet) compared with controls, including 11 proteins not previously identified in acetylation studies. Exposure to the HFD led to hyperacetylation of proteins involved in gluconeogenesis, mitochondrial oxidative metabolism, methionine metabolism, liver injury and the ER (endoplasmic reticulum) stress response. Livers of mice fed on the HFD had reduced SIRT3 activity, a 3-fold decrease in hepatic NAD(+) levels and increased mitochondrial protein oxidation. In contrast, neither SIRT1 nor histone acetyltransferase activities were altered, implicating SIRT3 as a dominant factor contributing to the observed phenotype. In Sirt3⁻(/)⁻ mice, exposure to the HFD further increased the acetylation status of liver proteins and reduced the activity of respiratory complexes III and IV. This is the first study to identify acetylation patterns in liver proteins of HFD-fed mice. Our results suggest that SIRT3 is an integral regulator of mitochondrial function and its depletion results in hyperacetylation of critical mitochondrial proteins that protect against hepatic lipotoxicity under conditions of nutrient excess.


Journal of Clinical Investigation | 2011

Sirt1 enhances skeletal muscle insulin sensitivity in mice during caloric restriction

Simon Schenk; Carrie E. McCurdy; Andrew Philp; Mark Z. Chen; Michael J. Holliday; Gautum K. Bandyopadhyay; Olivia Osborn; Keith Baar; Jerrold M. Olefsky

Skeletal muscle insulin resistance is a key component of the etiology of type 2 diabetes. Caloric restriction (CR) enhances the sensitivity of skeletal muscle to insulin. However, the molecular signals within skeletal muscle linking CR to improved insulin action remain largely unknown. Recently, the mammalian ortholog of Sir2, sirtuin 1 (Sirt1), has been identified as a potential transducer of perturbations in cellular energy flux into subsequent metabolic adaptations, including modulation of skeletal muscle insulin action. Here, we have demonstrated that CR increases Sirt1 deacetylase activity in skeletal muscle in mice, in parallel with enhanced insulin-stimulated phosphoinositide 3-kinase (PI3K) signaling and glucose uptake. These adaptations in skeletal muscle insulin action were completely abrogated in mice lacking Sirt1 deacetylase activity. Mechanistically, Sirt1 was found to be required for the deacetylation and inactivation of the transcription factor Stat3 during CR, which resulted in decreased gene and protein expression of the p55α/p50α subunits of PI3K, thereby promoting more efficient PI3K signaling during insulin stimulation. Thus, these data demonstrate that Sirt1 is an integral signaling node in skeletal muscle linking CR to improved insulin action, primarily via modulation of PI3K signaling.


Journal of Biological Chemistry | 2011

Sirtuin 1 (SIRT1) Deacetylase Activity Is Not Required for Mitochondrial Biogenesis or Peroxisome Proliferator-activated Receptor-γ Coactivator-1α (PGC-1α) Deacetylation following Endurance Exercise

Andrew Philp; Ai Chen; Debin Lan; Gretchen A. Meyer; Anne N. Murphy; Amy E. Knapp; I. Mark Olfert; Carrie E. McCurdy; George R. Marcotte; Michael C. Hogan; Keith Baar; Simon Schenk

The protein deacetylase, sirtuin 1 (SIRT1), is a proposed master regulator of exercise-induced mitochondrial biogenesis in skeletal muscle, primarily via its ability to deacetylate and activate peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). To investigate regulation of mitochondrial biogenesis by SIRT1 in vivo, we generated mice lacking SIRT1 deacetylase activity in skeletal muscle (mKO). We hypothesized that deacetylation of PGC-1α and mitochondrial biogenesis in sedentary mice and after endurance exercise would be impaired in mKO mice. Skeletal muscle contractile characteristics were determined in extensor digitorum longus muscle ex vivo. Mitochondrial biogenesis was assessed after 20 days of voluntary wheel running by measuring electron transport chain protein content, enzyme activity, and mitochondrial DNA expression. PGC-1α expression, nuclear localization, acetylation, and interacting protein association were determined following an acute bout of treadmill exercise (AEX) using co-immunoprecipitation and immunoblotting. Contrary to our hypothesis, skeletal muscle endurance, electron transport chain activity, and voluntary wheel running-induced mitochondrial biogenesis were not impaired in mKO versus wild-type (WT) mice. Moreover, PGC-1α expression, nuclear translocation, activity, and deacetylation after AEX were similar in mKO versus WT mice. Alternatively, we made the novel observation that deacetylation of PGC-1α after AEX occurs in parallel with reduced nuclear abundance of the acetyltransferase, general control of amino-acid synthesis 5 (GCN5), as well as reduced association between GCN5 and nuclear PGC-1α. These findings demonstrate that SIRT1 deacetylase activity is not required for exercise-induced deacetylation of PGC-1α or mitochondrial biogenesis in skeletal muscle and suggest that changes in GCN5 acetyltransferase activity may be an important regulator of PGC-1α activity after exercise.


Journal of Biological Chemistry | 2005

Increased P85α Is a Potent Negative Regulator of Skeletal Muscle Insulin Signaling and Induces in Vivo Insulin Resistance Associated with Growth Hormone Excess

Linda A. Barbour; Shaikh Mizanoor Rahman; Inga Gurevich; J. Wayne Leitner; Stephanie J. Fischer; Michael Roper; Trina A. Knotts; Yen Vo; Carrie E. McCurdy; Shoshana Yakar; Derek LeRoith; C. Ronald Kahn; Lewis C. Cantley; Jacob E. Friedman; Boris Draznin

Insulin resistance is a cardinal feature of normal pregnancy and excess growth hormone (GH) states, but its underlying mechanism remains enigmatic. We previously found a significant increase in the p85 regulatory subunit of phosphatidylinositol kinase (PI 3-kinase) and striking decrease in IRS-1-associated PI 3-kinase activity in the skeletal muscle of transgenic animals overexpressing human placental growth hormone. Herein, using transgenic mice bearing deletions in p85α, p85β, or insulin-like growth factor-1, we provide novel evidence suggesting that overexpression of p85α is a primary mechanism for skeletal muscle insulin resistance in response to GH. We found that the excess in total p85 was entirely accounted for by an increase in the free p85α-specific isoform. In mice with a liver-specific deletion in insulin-like growth factor-1, excess GH caused insulin resistance and an increase in skeletal muscle p85α, which was completely reversible using a GH-releasing hormone antagonist. To understand the role of p85α in GH-induced insulin resistance, we used mice bearing deletions of the genes coding for p85α or p85β, respectively (p85α +/– and p85β–/–). Wild type and p85β–/– mice developed in vivo insulin resistance and demonstrated overexpression of p85α and reduced insulin-stimulated PI 3-kinase activity in skeletal muscle in response to GH. In contrast, p85α+/–mice retained global insulin sensitivity and PI 3-kinase activity associated with reduced p85α expression. These findings demonstrated the importance of increased p85α in mediating skeletal muscle insulin resistance in response to GH and suggested a potential role for reducing p85α as a therapeutic strategy for enhancing insulin sensitivity in skeletal muscle.


American Journal of Physiology-endocrinology and Metabolism | 2014

High-fat diet-induced impairment of skeletal muscle insulin sensitivity is not prevented by SIRT1 overexpression

Amanda White; Andrew Philp; Heidi N. Fridolfsson; Jan M. Schilling; Anne N. Murphy; David Lee Hamilton; Carrie E. McCurdy; Hemal H. Patel; Simon Schenk

Skeletal muscle sirtuin 1 (SIRT1) expression is reduced under insulin-resistant conditions, such as those resulting from high-fat diet (HFD) feeding and obesity. Herein, we investigated whether constitutive activation of SIRT1 in skeletal muscle prevents HFD-induced muscle insulin resistance. To address this, mice with muscle-specific overexpression of SIRT1 (mOX) and wild-type (WT) littermates were fed a control diet (10% calories from fat) or HFD (60% of calories from fat) for 12 wk. Magnetic resonance imaging and indirect calorimetry were used to measure body composition and energy expenditure, respectively. Whole body glucose metabolism was assessed by oral glucose tolerance test, and insulin-stimulated glucose uptake was measured at a physiological insulin concentration in isolated soleus and extensor digitorum longus muscles. Although SIRT1 was significantly overexpressed in muscle of mOX vs. WT mice, body weight and percent body fat were similarly increased by HFD for both genotypes, and energy expenditure was unaffected by diet or genotype. Importantly, impairments in glucose tolerance and insulin-mediated activation of glucose uptake in skeletal muscle that occurred with HFD feeding were not prevented in mOX mice. In contrast, mOX mice showed enhanced postischemic cardiac functional recovery compared with WT mice, confirming the physiological functionality of the SIRT1 transgene in this mouse model. Together, these results demonstrate that activation of SIRT1 in skeletal muscle alone does not prevent HFD-induced glucose intolerance, weight gain, or insulin resistance.


Diabetes | 2012

Attenuated Pik3r1 Expression Prevents Insulin Resistance and Adipose Tissue Macrophage Accumulation in Diet-Induced Obese Mice

Carrie E. McCurdy; Simon Schenk; Michael J. Holliday; Andrew Philp; Julie A. Houck; David Patsouris; Paul S. MacLean; Susan M. Majka; Dwight J. Klemm; Jacob E. Friedman

Obese white adipose tissue (AT) is characterized by large-scale infiltration of proinflammatory macrophages, in parallel with systemic insulin resistance; however, the cellular stimulus that initiates this signaling cascade and chemokine release is still unknown. The objective of this study was to determine the role of the phosphoinositide 3-kinase (PI3K) regulatory subunits on AT macrophage (ATM) infiltration in obesity. Here, we find that the Pik3r1 regulatory subunits (i.e., p85α/p55α/p50α) are highly induced in AT from high-fat diet–fed obese mice, concurrent with insulin resistance. Global heterozygous deletion of the Pik3r1 regulatory subunits (αHZ), but not knockout of Pik3r2 (p85β), preserves whole-body, AT, and skeletal muscle insulin sensitivity, despite severe obesity. Moreover, ATM accumulation, proinflammatory gene expression, and ex vivo chemokine secretion in obese αHZ mice are markedly reduced despite endoplasmic reticulum (ER) stress, hypoxia, adipocyte hypertrophy, and Jun NH2-terminal kinase activation. Furthermore, bone marrow transplant studies reveal that these improvements in obese αHZ mice are independent of reduced Pik3r1 expression in the hematopoietic compartment. Taken together, these studies demonstrate that Pik3r1 expression plays a critical role in mediating AT insulin sensitivity and, more so, suggest that reduced PI3K activity is a key step in the initiation and propagation of the inflammatory response in obese AT.


The Journal of Clinical Endocrinology and Metabolism | 2011

Chronically Increased S6K1 Is Associated with Impaired IRS1 Signaling in Skeletal Muscle of GDM Women with Impaired Glucose Tolerance Postpartum

Linda A. Barbour; Carrie E. McCurdy; Teri L. Hernandez; Jacob E. Friedman

CONTEXT The rapidly increasing prevalence of gestational diabetes mellitus (GDM) globally places a growing population at risk for developing type 2 diabetes mellitus (T2DM), particularly those with persistent impaired glucose tolerance (IGT) postpartum. OBJECTIVE We sought to 1) identify dynamic insulin signaling abnormalities in vivo in a prospective, longitudinal study of GDM women compared to weight-matched pregnant controls both antepartum and postpartum; and 2) determine abnormalities that might distinguish GDM women who normalize their glucose tolerance postpartum from those with persistent IGT. DESIGN Skeletal muscle biopsies were obtained before and after a 75-g glucose load in nine overweight to obese GDM women and 10 weight-matched pregnant controls antepartum and postpartum. Postpartum biopsies were collected in five weight-matched GDM women with IGT (GDM/IGT). RESULTS GDM women had decreased skeletal muscle insulin-stimulated insulin receptor and insulin receptor substrate 1 (IRS1) tyrosine activation and reduced IRS1, concomitant with increased basal IRS1 serine phosphorylation and basal p70 S6-kinase (S6K1) activation, which resolved postpartum. However, GDM/IGT subjects had a persistent impairment in IRS1 activation and increased S6K1 phosphorylation compared to GDM subjects with normal glucose tolerance. CONCLUSIONS This study reveals that women with GDM demonstrate impaired IRS1 signaling associated with increased S6K1 activation in skeletal muscle in vivo. This defect is maintained postpartum in GDM/IGT subjects, despite similar body weights and cytokine levels. Given that GDM women with persistent IGT are at a high risk of developing T2DM, understanding how the nutrient-sensitive mammalian target of rapamycin/S6K1 pathway is chronically activated in GDM may lead to important therapies that could prevent the progression to T2DM.


Molecular metabolism | 2015

Knockout of STAT3 in skeletal muscle does not prevent high-fat diet-induced insulin resistance

Amanda White; Samuel A. LaBarge; Carrie E. McCurdy; Simon Schenk

Objective Increased signal transducer and activator of transcription 3 (STAT3) signaling has been implicated in the development of skeletal muscle insulin resistance, though its contribution, in vivo, remains to be fully defined. Therefore, the aim of this study was to determine whether knockout of skeletal muscle STAT3 would prevent high-fat diet (HFD)-induced insulin resistance. Methods We used Cre-LoxP methodology to generate mice with muscle-specific knockout (KO) of STAT3 (mKO). Beginning at 10 weeks of age, mKO mice and their wildtype/floxed (WT) littermates either continued consuming a low fat, control diet (CON; 10% of calories from fat) or were switched to a HFD (60% of calories from fat) for 20 days. We measured body composition, energy expenditure, oral glucose tolerance and in vivo insulin action using hyperinsulinemic-euglycemic clamps. We also measured insulin sensitivity in isolated soleus and extensor digitorum longus muscles using the 2-deoxy-glucose (2DOG) uptake technique. Results STAT3 protein expression was reduced ∼75–100% in muscle from mKO vs. WT mice. Fat mass and body fat percentage did not differ between WT and mKO mice on CON and were increased equally by HFD. There were also no genotype differences in energy expenditure or whole-body fat oxidation. As determined, in vivo (hyperinsulinemic-euglycemic clamps) and ex vivo (2DOG uptake), skeletal muscle insulin sensitivity did not differ between CON-fed mice, and was impaired similarly by HFD. Conclusions These results demonstrate that STAT3 activation does not underlie the development of HFD-induced skeletal muscle insulin resistance.


JCI insight | 2016

Maternal obesity reduces oxidative capacity in fetal skeletal muscle of Japanese macaques.

Carrie E. McCurdy; Simon Schenk; Byron Hetrick; Julie A. Houck; Brian G. Drew; Spencer Kaye; Melanie Lashbrook; Bryan C. Bergman; Diana Takahashi; Tyler Dean; Travis Nemkov; Ilya Gertsman; Kirk C. Hansen; Andrew Philp; Andrea L. Hevener; Adam J. Chicco; Kjersti Aagaard; Kevin L. Grove; Jacob E. Friedman

Maternal obesity is proposed to alter the programming of metabolic systems in the offspring, increasing the risk for developing metabolic diseases; however, the cellular mechanisms remain poorly understood. Here, we used a nonhuman primate model to examine the impact of a maternal Western-style diet (WSD) alone, or in combination with obesity (Ob/WSD), on fetal skeletal muscle metabolism studied in the early third trimester. We find that fetal muscle responds to Ob/WSD by upregulating fatty acid metabolism, mitochondrial complex activity, and metabolic switches (CPT-1, PDK4) that promote lipid utilization over glucose oxidation. Ob/WSD fetuses also had reduced mitochondrial content, diminished oxidative capacity, and lower mitochondrial efficiency in muscle. The decrease in oxidative capacity and glucose metabolism was persistent in primary myotubes from Ob/WSD fetuses despite no additional lipid-induced stress. Switching obese mothers to a healthy diet prior to pregnancy did not improve fetal muscle mitochondrial function. Lastly, while maternal WSD alone led only to intermediary changes in fetal muscle metabolism, it was sufficient to increase oxidative damage and cellular stress. Our findings suggest that maternal obesity or WSD, alone or in combination, leads to programmed decreases in oxidative metabolism in offspring muscle. These alterations may have important implications for future health.

Collaboration


Dive into the Carrie E. McCurdy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simon Schenk

University of California

View shared research outputs
Top Co-Authors

Avatar

Andrew Philp

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diana Takahashi

Oregon National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin L. Grove

Oregon National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar

Kjersti Aagaard

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Linda A. Barbour

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge