Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carrie J. McAdams is active.

Publication


Featured researches published by Carrie J. McAdams.


The Journal of Neuroscience | 1999

Effects of Attention on Orientation-Tuning Functions of Single Neurons in Macaque Cortical Area V4

Carrie J. McAdams; John H. R. Maunsell

We examined how attention affected the orientation tuning of 262 isolated neurons in extrastriate area V4 and 135 neurons in area V1 of two rhesus monkeys. The animals were trained to perform a delayed match-to-sample task in which oriented stimuli were presented in the receptive field of the neuron being recorded. On some trials the animals were instructed to pay attention to those stimuli, and on other trials they were instructed to pay attention to other stimuli outside the receptive field. In this way, orientation-tuning curves could be constructed from neuronal responses collected in two behavioral states: one in which those stimuli were attended by the animal and one in which those stimuli were ignored by the animal. We fit Gaussians to the neuronal responses to twelve different orientations for each behavioral state. Although attention enhanced the responses of V4 neurons (median 26% increase) and V1 neurons (median 8% increase), selectivity, as measured by the width of its orientation-tuning curve, was not systematically altered by attention. The effects of attention were consistent with a multiplicative scaling of the driven response to all orientations. We also found that attention did not cause systematic changes in the undriven activity of the neurons.


Visual Neuroscience | 1999

Visual response latencies of magnocellular and parvocellular LGN neurons in macaque monkeys.

John H. R. Maunsell; Geoffrey M. Ghose; John A. Assad; Carrie J. McAdams; C. E. Boudreau; Brett D. Noerager

Signals relayed through the magnocellular layers of the LGN travel on axons with faster conduction speeds than those relayed through the parvocellular layers. As a result, magnocellular signals might reach cerebral cortex appreciably before parvocellular signals. The relative speed of these two channels cannot be accurately predicted based solely on axon conduction speeds, however. Other factors, such as different degrees of convergence in the magnocellular and parvocellular channels and the retinal circuits that feed them, can affect the time it takes for magnocellular and parvocellular signals to activate cortical neurons. We have investigated the relative timing of visual responses mediated by the magnocellular and parvocellular channels. We recorded individually from 78 magnocellular and 80 parvocellular neurons in the LGN of two anesthetized monkeys. Visual response latencies were measured for small spots of light of various intensities. Over a wide range of stimulus intensities the fastest magnocellular response latencies preceded the fastest parvocellular response latencies by about 10 ms. Because parvocellular neurons are far more numerous than magnocellular neurons, convergence in cortex could reduce the magnocellular advantage by allowing parvocellular signals to generate detectable responses sooner than expected based on the responses of individual parvocellular neurons. An analysis based on a simple model using neurophysiological data collected from the LGN shows that convergence in cortex could eliminate or reverse the magnocellular advantage. This observation calls into question inferences that have been made about ordinal relationships of neurons based on timing of responses.


Neuron | 1999

Effects of Attention on the Reliability of Individual Neurons in Monkey Visual Cortex

Carrie J. McAdams; John H. R. Maunsell

To determine the physiological mechanisms underlying the enhancement of performance by attention, we examined how attention affects the ability of isolated neurons to discriminate orientation by investigating the reliability of responses with and without attention. Recording from 262 neurons in cortical area V4 while two rhesus macaques did a delayed match-to-sample task with oriented stimuli, we found that attention did not produce detectable changes in the variability of neuronal responses but did improve the orientation discriminability of the neurons. We also found that attention did not change the relationship between burst rate and response rate. Our results are consistent with the idea that attention selects groups of neurons for a multiplicative enhancement in response strength.


The Journal of Neuroscience | 2005

Attention Modulates the Responses of Simple Cells in Monkey Primary Visual Cortex

Carrie J. McAdams; R. Clay Reid

Spatial attention has long been postulated to act as a spotlight that increases the salience of visual stimuli at the attended location. We examined the effects of attention on the receptive fields of simple cells in primary visual cortex (V1) by training macaque monkeys to perform a task with two modes. In the attended mode, the stimuli relevant to the animals task overlay the receptive field of the neuron being recorded. In the unattended mode, the animal was cued to attend to stimuli outside the receptive field of that neuron. The relevant stimulus, a colored pixel, was briefly presented within a white-noise stimulus, a flickering grid of black and white pixels. The receptive fields of the neurons were mapped by correlating spikes with the white-noise stimulus in both attended and unattended modes. We found that attention could cause significant modulation of the visually evoked response despite an absence of significant effects on the overall firing rates. On further examination of the relationship between the strength of the visual stimulation and the firing rate, we found that attention appears to cause multiplicative scaling of the visually evoked responses of simple cells, demonstrating that attention reaches back to the initial stages of visual cortical processing.


NeuroImage | 2014

Age-related increase of resting metabolic rate in the human brain

Shin Lei Peng; Julie A. Dumas; Denise C. Park; Peiying Liu; Francesca M. Filbey; Carrie J. McAdams; Amy E. Pinkham; Bryon Adinoff; Rong Zhang; Hanzhang Lu

With age, many aspects of the brain structure undergo a pronounced decline, yet individuals generally function well until advanced old age. There appear to be several compensatory mechanisms in brain aging, but their precise nature is not well characterized. Here we provide evidence that the brain of older adults expends more energy when compared to younger adults, as manifested by an age-related increase (P=0.03) in cerebral metabolic rate of oxygen (CMRO2) (N=118, men=56, ages 18 to 74). We further showed that, before the mean menopausal age of 51years old, female and male groups have similar rates of CMRO2 increase (P=0.015) and there was no interaction between age and sex effects (P=0.85). However, when using data from the entire age range, women have a slower rate of CMRO2 change when compared to men (P<0.001 for age×sex interaction term). Thus, menopause and estrogen level may have played a role in this sex difference. Our data also revealed a possible circadian rhythm of CMRO2 in that brain metabolic rate is greater at noon than in the morning (P=0.02). This study reveals a potential neurobiological mechanism for age-related compensation in brain function and also suggests a sex-difference in its temporal pattern.


Journal of Clinical Investigation | 2013

Eating disorder predisposition is associated with ESRRA and HDAC4 mutations

Huxing Cui; Jarrette Moore; Sunbola S. Ashimi; Brittany L. Mason; Jordan Drawbridge; Shizhong Han; Benjamin Hing; Abigail Matthews; Carrie J. McAdams; Benjamin W. Darbro; Andrew A. Pieper; David A. Waller; Chao Xing; Michael Lutter

Anorexia nervosa and bulimia nervosa are common and severe eating disorders (EDs) of unknown etiology. Although genetic factors have been implicated in the psychopathology of EDs, a clear biological pathway has not been delineated. DNA from two large families affected by EDs was collected, and mutations segregating with illness were identified by whole-genome sequencing following linkage mapping or by whole-exome sequencing. In the first family, analysis of twenty members across three generations identified a rare missense mutation in the estrogen-related receptor α (ESRRA) gene that segregated with illness. In the second family, analysis of eight members across four generations identified a missense mutation in the histone deacetylase 4 (HDAC4) gene that segregated with illness. ESRRA and HDAC4 were determined to interact both in vitro in HeLa cells and in vivo in mouse cortex. Transcriptional analysis revealed that HDAC4 potently represses the expression of known ESRRA-induced target genes. Biochemical analysis of candidate mutations revealed that the identified ESRRA mutation decreased its transcriptional activity, while the HDAC4 mutation increased transcriptional repression of ESRRA. Our findings suggest that mutations that result in decreased ESRRA activity increase the risk of developing EDs.


PLOS ONE | 2008

Spatial Modulation of Primate Inferotemporal Responses by Eye Position

Sidney R. Lehky; Xinmiao Peng; Carrie J. McAdams; Anne B. Sereno

BACKGROUND A key aspect of representations for object recognition and scene analysis in the ventral visual stream is the spatial frame of reference, be it a viewer-centered, object-centered, or scene-based coordinate system. Coordinate transforms from retinocentric space to other reference frames involve combining neural visual responses with extraretinal postural information. METHODOLOGY/PRINCIPAL FINDINGS We examined whether such spatial information is available to anterior inferotemporal (AIT) neurons in the macaque monkey by measuring the effect of eye position on responses to a set of simple 2D shapes. We report, for the first time, a significant eye position effect in over 40% of recorded neurons with small gaze angle shifts from central fixation. Although eye position modulates responses, it does not change shape selectivity. CONCLUSIONS/SIGNIFICANCE These data demonstrate that spatial information is available in AIT for the representation of objects and scenes within a non-retinocentric frame of reference. More generally, the availability of spatial information in AIT calls into questions the classic dichotomy in visual processing that associates object shape processing with ventral structures such as AIT but places spatial processing in a separate anatomical stream projecting to dorsal structures.


Psychiatry Research-neuroimaging | 2015

Severity of eating disorder symptoms related to oxytocin receptor polymorphisms in anorexia nervosa.

Summer F. Acevedo; Celeste Valencia; Michael Lutter; Carrie J. McAdams

Oxytocin is a peptide hormone important for social behavior and differences in psychological traits have been associated with variants of the oxytocin receptor gene in healthy people. We examined whether single nucleotide polymorphisms (SNPs) of the oxytocin receptor gene (OXTR) correlated with clinical symptoms in women with anorexia nervosa, bulimia nervosa, and healthy comparison (HC) women. Subjects completed clinical assessments and provided DNA for analysis. Subjects were divided into four groups: HC, subjects currently with anorexia nervosa (AN-C), subjects with a history of anorexia nervosa but in long-term weight recovery (AN-WR), and subjects with bulimia nervosa (BN). Five SNPs of the oxytocin receptor were examined. Minor allele carriers showed greater severity in most of the psychiatric symptoms. Importantly, the combination of having had anorexia and carrying either of the A alleles for two SNPS in the OXTR gene (rs53576, rs2254298) was associated with increased severity specifically for ED symptoms including cognitions and behaviors associated both with eating and appearance. A review of psychosocial data related to the OXTR polymorphisms examined is included in the discussion. OXTR polymorphisms may be a useful intermediate endophenotype to consider in the treatment of patients with anorexia nervosa.


Human Brain Mapping | 2015

Neural responses to kindness and malevolence differ in illness and recovery in women with anorexia nervosa

Carrie J. McAdams; Terry Lohrenz; P. Read Montague

In anorexia nervosa, problems with social relationships contribute to illness, and improvements in social support are associated with recovery. Using the multiround trust game and 3T MRI, we compare neural responses in a social relationship in three groups of women: women with anorexia nervosa, women in long‐term weight recovery from anorexia nervosa, and healthy comparison women. Surrogate markers related to social signals in the game were computed each round to assess whether the relationship was improving (benevolence) or deteriorating (malevolence) for each subject. Compared with healthy women, neural responses to benevolence were diminished in the precuneus and right angular gyrus in both currently‐ill and weight‐recovered subjects with anorexia, but neural responses to malevolence differed in the left fusiform only in currently‐ill subjects. Next, using a whole‐brain regression, we identified an office assessment, the positive personalizing bias, that was inversely correlated with neural activity in the occipital lobe, the precuneus and posterior cingulate, the bilateral temporoparietal junctions, and dorsal anterior cingulate, during benevolence for all groups of subjects. The positive personalizing bias is a self‐report measure that assesses the degree with which a person attributes positive experiences to other people. These data suggest that problems in perceiving kindness may be a consistent trait related to the development of anorexia nervosa, whereas recognizing malevolence may be related to recovery. Future work on social brain function, in both healthy and psychiatric populations, should consider positive personalizing biases as a possible marker of neural differences related to kindness perception. Hum Brain Mapp 36:5207–5219, 2015.


PLOS ONE | 2014

Automatic and reproducible positioning of phase-contrast MRI for the quantification of global cerebral blood flow.

Peiying Liu; Hanzhang Lu; Francesca M. Filbey; Amy E. Pinkham; Carrie J. McAdams; Bryon Adinoff; Vamsi Daliparthi; Yan Cao

Phase-Contrast MRI (PC-MRI) is a noninvasive technique to measure blood flow. In particular, global but highly quantitative cerebral blood flow (CBF) measurement using PC-MRI complements several other CBF mapping methods such as arterial spin labeling and dynamic susceptibility contrast MRI by providing a calibration factor. The ability to estimate blood supply in physiological units also lays a foundation for assessment of brain metabolic rate. However, a major obstacle before wider applications of this method is that the slice positioning of the scan, ideally placed perpendicular to the feeding arteries, requires considerable expertise and can present a burden to the operator. In the present work, we proposed that the majority of PC-MRI scans can be positioned using an automatic algorithm, leaving only a small fraction of arteries requiring manual positioning. We implemented and evaluated an algorithm for this purpose based on feature extraction of a survey angiogram, which is of minimal operator dependence. In a comparative test-retest study with 7 subjects, the blood flow measurement using this algorithm showed an inter-session coefficient of variation (CoV) of . The Bland-Altman method showed that the automatic method differs from the manual method by between and , for of the CBF measurements. This is comparable to the variance in CBF measurement using manually-positioned PC MRI alone. In a further application of this algorithm to 157 consecutive subjects from typical clinical cohorts, the algorithm provided successful positioning in 89.7% of the arteries. In 79.6% of the subjects, all four arteries could be planned using the algorithm. Chi-square tests of independence showed that the success rate was not dependent on the age or gender, but the patients showed a trend of lower success rate (p = 0.14) compared to healthy controls. In conclusion, this automatic positioning algorithm could improve the application of PC-MRI in CBF quantification.

Collaboration


Dive into the Carrie J. McAdams's collaboration.

Top Co-Authors

Avatar

Daniel C. Krawczyk

University of Texas at Dallas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erin Van Enkevort

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Hanzhang Lu

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jessica A. Harper

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Michael Lutter

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Peiying Liu

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Amy E. Pinkham

University of Texas at Dallas

View shared research outputs
Top Co-Authors

Avatar

Bryon Adinoff

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Francesca M. Filbey

University of Texas at Dallas

View shared research outputs
Researchain Logo
Decentralizing Knowledge