Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carrie Kincaid is active.

Publication


Featured researches published by Carrie Kincaid.


American Journal of Pathology | 1998

Late-Onset Chronic Inflammatory Encephalopathy in Immune-Competent and Severe Combined Immune-Deficient (SCID) Mice with Astrocyte-Targeted Expression of Tumor Necrosis Factor

Anna K. Stalder; Monica J. Carson; Axel Pagenstecher; Valérie C. Asensio; Carrie Kincaid; Megan Benedict; Henry C. Powell; Eliezer Masliah; Iain L. Campbell

To examine the role of tumor necrosis factor (TNF)-alpha in the pathogenesis of degenerative disorders of the central nervous system (CNS), transgenic mice were developed in which expression of murine TNF-alpha was targeted to astrocytes using a glial fibrillary acidic protein (GFAP)-TNF-alpha fusion gene. In two independent GFAP-TNFalpha transgenic lines (termed GT-8 or GT-2) adult (>4 months of age) animals developed a progressive ataxia (GT-8) or total paralysis affecting the lower body (GT-2). Symptomatic mice had prominent meningoencephalitis (GT-8) or encephalomyelitis (GT-2) in which large numbers of B cells and CD4+ and CD8+ T cells accumulated at predominantly perivascular sites. The majority of these lymphocytes displayed a memory cell phenotype (CD44high, CD62Llow, CD25-) and expressed an early activation marker (CD69). Parenchymal lesions contained mostly CD45+ high, MHC class II+, and Mac-1+ cells of the macrophage microglial lineage with lower numbers of neutrophils and few CD4+ and CD8+ T cells. Cerebral expression of the cellular adhesion molecules ICAM-1, VCAM-1, and MAdCAM as well as a number of alpha- and beta-chemokines was induced or upregulated and preceded the development of inflammation, suggesting an important signaling role for these molecules in the CNS leukocyte migration. Degenerative changes in the CNS of the GFAP-TNFalpha mice paralleled the development of the inflammatory lesions and included primary and secondary demyelination and neurodegeneration. Disease exacerbation with more extensive inflammatory lesions that contained activated cells of the macrophage/microglial lineage occurred in GFAP-TNFalpha mice with severe combined immune deficiency. Thus, persistent astrocyte expression of murine TNF-alpha in the CNS induces a late-onset chronic inflammatory encephalopathy in which macrophage/microglial cells but not lymphocytes play a central role in mediating injury.


Journal of Virology | 2001

Interferon-Independent, Human Immunodeficiency Virus Type 1 gp120-Mediated Induction of CXCL10/IP-10 Gene Expression by Astrocytes In Vivo and In Vitro

Valérie C. Asensio; Joachim Maier; Richard Milner; Kaan Boztug; Carrie Kincaid; Maxime Moulard; Curtis Phillipson; Kristen Lindsley; Thomas Krucker; Howard S. Fox; Iain L. Campbell

ABSTRACT The CXC chemokine gamma interferon (IFN-γ)-inducible protein CXCL10/IP-10 is markedly elevated in cerebrospinal fluid and brain of individuals infected with human immunodeficiency virus type 1 (HIV-1) and is implicated in the pathogenesis of HIV-associated dementia (HAD). To explore the possible role of CXCL10/IP-10 in HAD, we examined the expression of this and other chemokines in the central nervous system (CNS) of transgenic mice with astrocyte-targeted expression of HIV gp120 under the control of the glial fibrillary acidic protein (GFAP) promoter, a murine model for HIV-1 encephalopathy. Compared with wild-type controls, CNS expression of the CC chemokine gene CCL2/MCP-1 and the CXC chemokine genes CXCL10/IP-10 and CXCL9/Mig was induced in the GFAP-HIV gp120 mice. CXCL10/IP-10 RNA expression was increased most and overlapped the expression of the transgene-encoded HIV gp120 gene. Astrocytes and to a lesser extent microglia were identified as the major cellular sites for CXCL10/IP-10 gene expression. There was no detectable expression of any class of IFN or their responsive genes. In astrocyte cultures, soluble recombinant HIV gp120 protein was capable of directly inducing CXCL10/IP-10 gene expression a process that was independent of STAT1. These findings highlight a novel IFN- and STAT1-independent mechanism for the regulation of CXCL10/IP-10 expression and directly link expression of HIV gp120 to the induction of CXCL10/IP-10 that is found in HIV infection of the CNS. Finally, one function of IP-10 expression may be the recruitment of leukocytes to the CNS, since the brain of GFAP-HIV gp120 mice had increased numbers of CD3+ T cells that were found in close proximity to sites of CXCL10/IP-10 RNA expression.


Journal of Immunology | 2000

Astrocyte-Targeted Expression of IL-12 Induces Active Cellular Immune Responses in the Central Nervous System and Modulates Experimental Allergic Encephalomyelitis

Axel Pagenstecher; Silke Lassmann; Monica J. Carson; Carrie Kincaid; Anna K. Stalder; Iain L. Campbell

The role of IL-12 in the evolution of immunoinflammatory responses at a localized tissue level was investigated. Transgenic mice were developed with expression of either both the IL-12 subunits (p35 and p40) or only the IL-12 p40 subunit genes targeted to astrocytes in the mouse CNS. Glial fibrillary acidic protein (GF)-IL-12 mice, bigenic for the p35 and p40 genes, developed neurologic disease which correlated with the levels and sites of transgene-encoded IL-12 expression. In these mice, the brain contained numerous perivascular and parenchymal inflammatory lesions consisting of predominantly CD4+ and CD8+ T cells as well as NK cells. The majority of the infiltrating T cells had an activated phenotype (CD44high, CD45Rblow, CD62Llow, CD69high, VLA-4 high, and CD25+). Functional activation of the cellular immune response was also evident with marked cerebral expression of the IFN-γ, TNF, and IL-1αβ genes. Concomitant with leukocyte infiltration, the CNS expression of immune accessory molecules was induced or up-regulated, including ICAM-1, VCAM-1, and MHC class II and B7-2. Glial fibrillary acidic protein-p40 mice with expression of IL-12 p40 alone remained asymptomatic, with no inflammation evident at any age studied. The effect of local CNS production of IL-12 in the development of experimental autoimmune encephalomyelitis was studied. After immunization with myelin oligodendrocyte glycoprotein-peptides, GF-IL-12 mice had an earlier onset and higher incidence but not more severe disease. We conclude that localized expression of IL-12 by astrocytes can 1) promote the spontaneous development of activated type 1 T cell and NK cellular immunity and cytokine responses in the CNS, and 2) promote more effective Ag-specific T cell dynamics but not activity in experimental autoimmune encephalomyelitis.


American Journal of Pathology | 2000

Regulation of matrix metalloproteinases and their inhibitor genes in lipopolysaccharide-induced endotoxemia in mice.

Axel Pagenstecher; Anna K. Stalder; Carrie Kincaid; Benedikt Volk; Iain L. Campbell

An imbalance between matrix metalloproteinases (MMPs) and inhibitors of MMPs (TIMPs) may contribute to tissue destruction that is found in various inflammatory disorders. To determine in an in vivo experimental setting whether the inflammatory reaction in the course of lipopolysaccharide (LPS)-induced endotoxemia causes an altered balance in the MMP/TIMP system, we analyzed the expression of a number of MMP and TIMP genes as well as MMP enzymatic activity in the liver, kidney, spleen, and brain at various time points after systemic injection of different doses of LPS in mice. Injection of sublethal doses of LPS led to an organ- and time-specific pattern of up-regulation of several MMP genes and the TIMP-1 gene in the liver, spleen, and kidney, whereas in the brain only TIMP-1 was induced. Injection of a lethal dose of LPS caused similar but more prolonged expression of these MMP genes as well as the induction of additional MMP genes in all organs. In LPS-treated mice in situ hybridization revealed collagenase 3 gene induction in cells resembling macrophages whereas TIMP-1 RNA was detected predominantly in parenchymal cells. Finally, gelatin zymography revealed increased gelatinolytic activity in all organs after LPS treatment. These observations highlight a dramatic shift in favor of increased expression of the MMP genes over the TIMP genes during LPS-induced endotoxemia, and suggest that MMPs may contribute to the development of organ damage in endotoxemia.


American Journal of Pathology | 2002

Regulation of signal transducer and activator of transcription and suppressor of cytokine-signaling gene expression in the brain of mice with astrocyte-targeted production of interleukin-12 or experimental autoimmune encephalomyelitis.

Joachim Maier; Carrie Kincaid; Axel Pagenstecher; Iain L. Campbell

Interleukin (IL)-12 and interferon (IFN)-gamma are implicated in the pathogenesis of immune disorders of the central nervous system (CNS). To define the basis for the actions of these cytokines in the CNS, we examined the temporal and spatial regulation of key signal transducers and activators of transcription (STATs) and suppressors of cytokine signaling (SOCS) in the brain of transgenic mice with astrocyte production of IL-12 or in mice with experimental autoimmune encephalomyelitis (EAE). In healthy mice, with the exception of STAT4 and STAT6, the expression of a number of STAT and SOCS genes was detectable. However, in symptomatic transgenic mice and in EAE significant up-regulation of STAT1, STAT2, STAT3, STAT4, IRF9, and SOCS1 and SOCS3 RNA transcripts was observed. Although the increased expression of STAT1 RNA was widely distributed and included neurons, astrocytes, and microglia, STAT4 and STAT3 and SOCS1 and SOCS3 RNA was primarily restricted to the infiltrating mononuclear cell population. The level and location of the STAT1, STAT3, and STAT4 proteins overlapped with their corresponding RNA and additionally showed nuclear localization indicative of activation of these molecules. Thus, in both the glial fibrillary acidic protein-IL-12 mice and in EAE the CNS expression of key STAT and SOCS genes that regulate IL-12 (STAT4) and IFN-gamma (STAT1, SOCS1, and SOCS3) receptor signaling is highly regulated and compartmentalized. We conclude the interaction between these positive and negative signaling circuits and their distinct cellular locations likely play a defining role in coordinating the actions of IL-12 and IFN-gamma during the pathogenesis of type 1 immune responses in the CNS.


Journal of NeuroVirology | 1999

Chemokines and the inflammatory response to viral infection in the central nervous system with a focus on lymphocytic choriomeningitis virus

ValeÂrie C Asensio; Carrie Kincaid; Iain L. Campbell

Leukocyte migration to the central nervous system (CNS) is a common process with often devastating consequences that follows infection of this tissue compartment with a variety of viruses. The mechanisms underlying this process are poorly defined but, it is hypothesized that chemokines may be important regulatory signals for the cerebral recruitment and extravasation of leukocytes. Here we discuss this hypothesis in the context of different viral infections of the CNS with emphasis on lymphocytic choriomeningitis virus (LCMV). In general, the pattern of chemokine gene expression in these CNS viral infections is dynamic and complex with often overlapping expression of a number of different subclasses of chemokine genes. In the case of CNS infection with LCMV, cerebral chemokine gene expression was observed in euthymic and to a lesser extent athymic mice and preceded increases in cytokine gene expression and in euthymic mice, CNS leukocyte recruitment. These observations together with the finding that CRG-2/IP-10, a prominently expressed chemokine gene in many different CNS viral infections, was expressed by cells intrinsic to the CNS e.g. astrocytes, suggest that activation of chemokine gene expression may be a direct, early and localized host response to viral infection. These findings are consistent with the proposed involvement of chemokines as key signaling molecules for the migration of leukocytes to the CNS following virus infection.


Journal of Immunology | 2001

Induction of Type 1 Immune Pathology in the Brain Following Immunization Without Central Nervous System Autoantigen in Transgenic Mice With Astrocyte-Targeted Expression of IL-12

Silke Lassmann; Carrie Kincaid; Valérie C. Asensio; Iain L. Campbell

IL-12, a cytokine produced by microglia, may regulate cellular immunity at a localized level in the CNS. To investigate this further, we examined the consequences of peripheral immune stimulation without specific autoantigen in wild-type or transgenic (termed GF-IL12) mice with astrocyte production of the bioactive IL-12 p75 heterodimer. Active immunization with CFA and pertussis toxin, a procedure known to stimulate a robust type 1-biased immune response, produced CNS immune pathology from which GF-IL12 but not wild-type mice developed signs of clinical disease consisting of loss of activity, piloerection, mild tremor, and motor change. All immunized mice had some degree of mononuclear cell infiltration into the brain; however, the severity of this was markedly increased in GF-IL12 mice where leukocytes accumulated in perivascular and parenchymal locations. Accumulating cells consisted of CD4+ and CD8+ T cells and macrophage/microglia. Moreover, expression of cytokines (IFN-γ and TNF), chemokines (IFN-inducible protein-10 and RANTES), the immune accessory molecules, MHC class II, B7.2, ICAM-1 and VCAM-1, and NO synthase-2 was induced in the CNS of the GF-IL12 mice. Therefore, peripheral immunization of GF-IL12 but not wild-type mice can provoke active type 1 immunity in the brain—a process that does not require CNS-specific immunizing autoantigen. These findings indicate that the cytokine milieu of a tissue can dramatically influence the development of intrinsic immune responses and associated pathology.


American Journal of Pathology | 1998

Differential expression of matrix metalloproteinase and tissue inhibitor of matrix metalloproteinase genes in the mouse central nervous system in normal and inflammatory states.

Axel Pagenstecher; Anna K. Stalder; Carrie Kincaid; S. D. Shapiro; Iain L. Campbell


Journal of Virology | 1998

DNA Immunization with Minigenes: Low Frequency of Memory Cytotoxic T Lymphocytes and Inefficient Antiviral Protection Are Rectified by Ubiquitination

Fernando Rodriguez; Ling Ling An; Stephanie Harkins; Jie Zhang; Masayuki Yokoyama; Georg Madison Widera; James T. Fuller; Carrie Kincaid; Iain L. Campbell; J. Lindsay Whitton


Journal of Immunology | 1997

Lipopolysaccharide-induced IL-12 expression in the central nervous system and cultured astrocytes and microglia.

Anna K. Stalder; Axel Pagenstecher; Naichen Yu; Carrie Kincaid; Chi-Shiun Chiang; M V Hobbs; Floyd E. Bloom; Iain L. Campbell

Collaboration


Dive into the Carrie Kincaid's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna K. Stalder

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Silke Lassmann

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joachim Maier

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Floyd E. Bloom

Scripps Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge