Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carrie Sougnez is active.

Publication


Featured researches published by Carrie Sougnez.


Nature | 2012

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Jordi Barretina; Giordano Caponigro; Nicolas Stransky; Kavitha Venkatesan; Adam A. Margolin; Sungjoon Kim; Christopher J. Wilson; Joseph Lehar; Gregory V. Kryukov; Dmitriy Sonkin; Anupama Reddy; Manway Liu; Lauren Murray; Michael F. Berger; John E. Monahan; Paula Morais; Jodi Meltzer; Adam Korejwa; Judit Jané-Valbuena; Felipa A. Mapa; Joseph Thibault; Eva Bric-Furlong; Pichai Raman; Aaron Shipway; Ingo H. Engels; Jill Cheng; Guoying K. Yu; Jianjun Yu; Peter Aspesi; Melanie de Silva

The systematic translation of cancer genomic data into knowledge of tumour biology and therapeutic possibilities remains challenging. Such efforts should be greatly aided by robust preclinical model systems that reflect the genomic diversity of human cancers and for which detailed genetic and pharmacological annotation is available. Here we describe the Cancer Cell Line Encyclopedia (CCLE): a compilation of gene expression, chromosomal copy number and massively parallel sequencing data from 947 human cancer cell lines. When coupled with pharmacological profiles for 24 anticancer drugs across 479 of the cell lines, this collection allowed identification of genetic, lineage, and gene-expression-based predictors of drug sensitivity. In addition to known predictors, we found that plasma cell lineage correlated with sensitivity to IGF1 receptor inhibitors; AHR expression was associated with MEK inhibitor efficacy in NRAS-mutant lines; and SLFN11 expression predicted sensitivity to topoisomerase inhibitors. Together, our results indicate that large, annotated cell-line collections may help to enable preclinical stratification schemata for anticancer agents. The generation of genetic predictions of drug response in the preclinical setting and their incorporation into cancer clinical trial design could speed the emergence of ‘personalized’ therapeutic regimens.


Science | 2007

Genome-Wide Association Analysis Identifies Loci for Type 2 Diabetes and Triglyceride Levels

Richa Saxena; Benjamin F. Voight; Valeriya Lyssenko; Noël P. Burtt; Paul I. W. de Bakker; Hong Chen; Jeffrey J. Roix; Sekar Kathiresan; Joel N. Hirschhorn; Mark J. Daly; Thomas Edward Hughes; Leif Groop; David Altshuler; Peter Almgren; Jose C. Florez; Joanne M. Meyer; Kristin Ardlie; Kristina Bengtsson Boström; Bo Isomaa; Guillaume Lettre; Ulf Lindblad; Helen N. Lyon; Olle Melander; Christopher Newton-Cheh; Peter Nilsson; Marju Orho-Melander; Lennart Råstam; Elizabeth K. Speliotes; Marja-Riitta Taskinen; Tiinamaija Tuomi

New strategies for prevention and treatment of type 2 diabetes (T2D) require improved insight into disease etiology. We analyzed 386,731 common single-nucleotide polymorphisms (SNPs) in 1464 patients with T2D and 1467 matched controls, each characterized for measures of glucose metabolism, lipids, obesity, and blood pressure. With collaborators (FUSION and WTCCC/UKT2D), we identified and confirmed three loci associated with T2D—in a noncoding region near CDKN2A and CDKN2B, in an intron of IGF2BP2, and an intron of CDKAL1—and replicated associations near HHEX and in SLC30A8 found by a recent whole-genome association study. We identified and confirmed association of a SNP in an intron of glucokinase regulatory protein (GCKR) with serum triglycerides. The discovery of associated variants in unsuspected genes and outside coding regions illustrates the ability of genome-wide association studies to provide potentially important clues to the pathogenesis of common diseases.


Nature | 2013

Mutational heterogeneity in cancer and the search for new cancer-associated genes.

Michael S. Lawrence; Petar Stojanov; Paz Polak; Gregory V. Kryukov; Kristian Cibulskis; Andrey Sivachenko; Scott L. Carter; Chip Stewart; Craig H. Mermel; Steven A. Roberts; Adam Kiezun; Peter S. Hammerman; Aaron McKenna; Yotam Drier; Lihua Zou; Alex H. Ramos; Trevor J. Pugh; Nicolas Stransky; Elena Helman; Jaegil Kim; Carrie Sougnez; Lauren Ambrogio; Elizabeth Nickerson; Erica Shefler; Maria L. Cortes; Daniel Auclair; Gordon Saksena; Douglas Voet; Michael S. Noble; Daniel DiCara

Major international projects are underway that are aimed at creating a comprehensive catalogue of all the genes responsible for the initiation and progression of cancer. These studies involve the sequencing of matched tumour–normal samples followed by mathematical analysis to identify those genes in which mutations occur more frequently than expected by random chance. Here we describe a fundamental problem with cancer genome studies: as the sample size increases, the list of putatively significant genes produced by current analytical methods burgeons into the hundreds. The list includes many implausible genes (such as those encoding olfactory receptors and the muscle protein titin), suggesting extensive false-positive findings that overshadow true driver events. We show that this problem stems largely from mutational heterogeneity and provide a novel analytical methodology, MutSigCV, for resolving the problem. We apply MutSigCV to exome sequences from 3,083 tumour–normal pairs and discover extraordinary variation in mutation frequency and spectrum within cancer types, which sheds light on mutational processes and disease aetiology, and in mutation frequency across the genome, which is strongly correlated with DNA replication timing and also with transcriptional activity. By incorporating mutational heterogeneity into the analyses, MutSigCV is able to eliminate most of the apparent artefactual findings and enable the identification of genes truly associated with cancer.


Nature | 2008

Somatic mutations affect key pathways in lung adenocarcinoma

Li Ding; Gad Getz; David A. Wheeler; Elaine R. Mardis; Michael D. McLellan; Kristian Cibulskis; Carrie Sougnez; Heidi Greulich; Donna M. Muzny; Margaret Morgan; Lucinda Fulton; Robert S. Fulton; Qunyuan Zhang; Michael C. Wendl; Michael S. Lawrence; David E. Larson; Ken Chen; David J. Dooling; Aniko Sabo; Alicia Hawes; Hua Shen; Shalini N. Jhangiani; Lora Lewis; Otis Hall; Yiming Zhu; Tittu Mathew; Yanru Ren; Jiqiang Yao; Steven E. Scherer; Kerstin Clerc

Determining the genetic basis of cancer requires comprehensive analyses of large collections of histopathologically well-classified primary tumours. Here we report the results of a collaborative study to discover somatic mutations in 188 human lung adenocarcinomas. DNA sequencing of 623 genes with known or potential relationships to cancer revealed more than 1,000 somatic mutations across the samples. Our analysis identified 26 genes that are mutated at significantly high frequencies and thus are probably involved in carcinogenesis. The frequently mutated genes include tyrosine kinases, among them the EGFR homologue ERBB4; multiple ephrin receptor genes, notably EPHA3; vascular endothelial growth factor receptor KDR; and NTRK genes. These data provide evidence of somatic mutations in primary lung adenocarcinoma for several tumour suppressor genes involved in other cancers—including NF1, APC, RB1 and ATM—and for sequence changes in PTPRD as well as the frequently deleted gene LRP1B. The observed mutational profiles correlate with clinical features, smoking status and DNA repair defects. These results are reinforced by data integration including single nucleotide polymorphism array and gene expression array. Our findings shed further light on several important signalling pathways involved in lung adenocarcinoma, and suggest new molecular targets for treatment.


Cell | 2013

The somatic genomic landscape of glioblastoma.

Cameron Brennan; Roel G.W. Verhaak; Aaron McKenna; Benito Campos; Houtan Noushmehr; Sofie R. Salama; Siyuan Zheng; Debyani Chakravarty; J. Zachary Sanborn; Samuel H. Berman; Rameen Beroukhim; Brady Bernard; Chang-Jiun Wu; Giannicola Genovese; Ilya Shmulevich; Jill S. Barnholtz-Sloan; Lihua Zou; Rahulsimham Vegesna; Sachet A. Shukla; Giovanni Ciriello; W.K. Yung; Wei Zhang; Carrie Sougnez; Tom Mikkelsen; Kenneth D. Aldape; Darell D. Bigner; Erwin G. Van Meir; Michael D. Prados; Andrew E. Sloan; Keith L. Black

We describe the landscape of somatic genomic alterations based on multidimensional and comprehensive characterization of more than 500 glioblastoma tumors (GBMs). We identify several novel mutated genes as well as complex rearrangements of signature receptors, including EGFR and PDGFRA. TERT promoter mutations are shown to correlate with elevated mRNA expression, supporting a role in telomerase reactivation. Correlative analyses confirm that the survival advantage of the proneural subtype is conferred by the G-CIMP phenotype, and MGMT DNA methylation may be a predictive biomarker for treatment response only in classical subtype GBM. Integrative analysis of genomic and proteomic profiles challenges the notion of therapeutic inhibition of a pathway as an alternative to inhibition of the target itself. These data will facilitate the discovery of therapeutic and diagnostic target candidates, the validation of research and clinical observations and the generation of unanticipated hypotheses that can advance our molecular understanding of this lethal cancer.


Science | 2011

The Mutational Landscape of Head and Neck Squamous Cell Carcinoma

Nicolas Stransky; Ann Marie Egloff; Aaron D. Tward; Aleksandar D. Kostic; Kristian Cibulskis; Andrey Sivachenko; Gregory V. Kryukov; Michael S. Lawrence; Carrie Sougnez; Aaron McKenna; Erica Shefler; Alex H. Ramos; Petar Stojanov; Scott L. Carter; Douglas Voet; Maria L. Cortes; Daniel Auclair; Michael F. Berger; Gordon Saksena; Candace Guiducci; Robert C. Onofrio; Melissa Parkin; Marjorie Romkes; Joel L. Weissfeld; Raja R. Seethala; Lin Wang; Claudia Rangel-Escareño; Juan Carlos Fernández-López; Alfredo Hidalgo-Miranda; Jorge Melendez-Zajgla

The mutational profile of head and neck cancer is complex and may pose challenges to the development of targeted therapies. Head and neck squamous cell carcinoma (HNSCC) is a common, morbid, and frequently lethal malignancy. To uncover its mutational spectrum, we analyzed whole-exome sequencing data from 74 tumor-normal pairs. The majority exhibited a mutational profile consistent with tobacco exposure; human papillomavirus was detectable by sequencing DNA from infected tumors. In addition to identifying previously known HNSCC genes (TP53, CDKN2A, PTEN, PIK3CA, and HRAS), our analysis revealed many genes not previously implicated in this malignancy. At least 30% of cases harbored mutations in genes that regulate squamous differentiation (for example, NOTCH1, IRF6, and TP63), implicating its dysregulation as a major driver of HNSCC carcinogenesis. More generally, the results indicate the ability of large-scale sequencing to reveal fundamental tumorigenic mechanisms.


Nature Biotechnology | 2013

Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples.

Kristian Cibulskis; Michael S. Lawrence; Scott L. Carter; Andrey Sivachenko; David M Jaffe; Carrie Sougnez; Stacey Gabriel; Matthew Meyerson; Eric S. Lander; Gad Getz

Detection of somatic point substitutions is a key step in characterizing the cancer genome. However, existing methods typically miss low-allelic-fraction mutations that occur in only a subset of the sequenced cells owing to either tumor heterogeneity or contamination by normal cells. Here we present MuTect, a method that applies a Bayesian classifier to detect somatic mutations with very low allele fractions, requiring only a few supporting reads, followed by carefully tuned filters that ensure high specificity. We also describe benchmarking approaches that use real, rather than simulated, sequencing data to evaluate the sensitivity and specificity as a function of sequencing depth, base quality and allelic fraction. Compared with other methods, MuTect has higher sensitivity with similar specificity, especially for mutations with allelic fractions as low as 0.1 and below, making MuTect particularly useful for studying cancer subclones and their evolution in standard exome and genome sequencing data.


Cell | 2012

Mapping the Hallmarks of Lung Adenocarcinoma with Massively Parallel Sequencing

Marcin Imielinski; Alice H. Berger; Peter S. Hammerman; Bryan Hernandez; Trevor J. Pugh; Eran Hodis; Jeonghee Cho; James Suh; Marzia Capelletti; Andrey Sivachenko; Carrie Sougnez; Daniel Auclair; Michael S. Lawrence; Petar Stojanov; Kristian Cibulskis; Kyusam Choi; Luc de Waal; Tanaz Sharifnia; Angela N. Brooks; Heidi Greulich; Shantanu Banerji; Thomas Zander; Danila Seidel; Frauke Leenders; Sascha Ansén; Corinna Ludwig; Walburga Engel-Riedel; Erich Stoelben; Jürgen Wolf; Chandra Goparju

Lung adenocarcinoma, the most common subtype of non-small cell lung cancer, is responsible for more than 500,000 deaths per year worldwide. Here, we report exome and genome sequences of 183 lung adenocarcinoma tumor/normal DNA pairs. These analyses revealed a mean exonic somatic mutation rate of 12.0 events/megabase and identified the majority of genes previously reported as significantly mutated in lung adenocarcinoma. In addition, we identified statistically recurrent somatic mutations in the splicing factor gene U2AF1 and truncating mutations affecting RBM10 and ARID1A. Analysis of nucleotide context-specific mutation signatures grouped the sample set into distinct clusters that correlated with smoking history and alterations of reported lung adenocarcinoma genes. Whole-genome sequence analysis revealed frequent structural rearrangements, including in-frame exonic alterations within EGFR and SIK2 kinases. The candidate genes identified in this study are attractive targets for biological characterization and therapeutic targeting of lung adenocarcinoma.


Nature | 2011

Initial genome sequencing and analysis of multiple myeloma

Michael Chapman; Michael S. Lawrence; Jonathan J. Keats; Kristian Cibulskis; Carrie Sougnez; Anna C. Schinzel; Christina L. Harview; Jean Philippe Brunet; Gregory J. Ahmann; Mazhar Adli; Kenneth C. Anderson; Kristin Ardlie; Daniel Auclair; Angela Baker; P. Leif Bergsagel; Bradley E. Bernstein; Yotam Drier; Rafael Fonseca; Stacey B. Gabriel; Craig C. Hofmeister; Sundar Jagannath; Andrzej J. Jakubowiak; Amrita Krishnan; Joan Levy; Ted Liefeld; Sagar Lonial; Scott Mahan; Bunmi Mfuko; Stefano Monti; Louise M. Perkins

Multiple myeloma is an incurable malignancy of plasma cells, and its pathogenesis is poorly understood. Here we report the massively parallel sequencing of 38 tumour genomes and their comparison to matched normal DNAs. Several new and unexpected oncogenic mechanisms were suggested by the pattern of somatic mutation across the data set. These include the mutation of genes involved in protein translation (seen in nearly half of the patients), genes involved in histone methylation, and genes involved in blood coagulation. In addition, a broader than anticipated role of NF-κB signalling was indicated by mutations in 11 members of the NF-κB pathway. Of potential immediate clinical relevance, activating mutations of the kinase BRAF were observed in 4% of patients, suggesting the evaluation of BRAF inhibitors in multiple myeloma clinical trials. These results indicate that cancer genome sequencing of large collections of samples will yield new insights into cancer not anticipated by existing knowledge.


Nature | 2007

Characterizing the cancer genome in lung adenocarcinoma

Barbara A. Weir; Michele S. Woo; Gad Getz; Sven Perner; Li Ding; Rameen Beroukhim; William M. Lin; Michael A. Province; Aldi T. Kraja; Laura A. Johnson; Kinjal Shah; Mitsuo Sato; Roman K. Thomas; Justine A. Barletta; Ingrid B. Borecki; Stephen Broderick; Andrew C. Chang; Derek Y. Chiang; Lucian R. Chirieac; Jeonghee Cho; Yoshitaka Fujii; Adi F. Gazdar; Thomas J. Giordano; Heidi Greulich; Megan Hanna; Bruce E. Johnson; Mark G. Kris; Alex E. Lash; Ling Lin; Neal I. Lindeman

Somatic alterations in cellular DNA underlie almost all human cancers. The prospect of targeted therapies and the development of high-resolution, genome-wide approaches are now spurring systematic efforts to characterize cancer genomes. Here we report a large-scale project to characterize copy-number alterations in primary lung adenocarcinomas. By analysis of a large collection of tumours (n = 371) using dense single nucleotide polymorphism arrays, we identify a total of 57 significantly recurrent events. We find that 26 of 39 autosomal chromosome arms show consistent large-scale copy-number gain or loss, of which only a handful have been linked to a specific gene. We also identify 31 recurrent focal events, including 24 amplifications and 7 homozygous deletions. Only six of these focal events are currently associated with known mutations in lung carcinomas. The most common event, amplification of chromosome 14q13.3, is found in ∼12% of samples. On the basis of genomic and functional analyses, we identify NKX2-1 (NK2 homeobox 1, also called TITF1), which lies in the minimal 14q13.3 amplification interval and encodes a lineage-specific transcription factor, as a novel candidate proto-oncogene involved in a significant fraction of lung adenocarcinomas. More generally, our results indicate that many of the genes that are involved in lung adenocarcinoma remain to be discovered.

Collaboration


Dive into the Carrie Sougnez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge