Carsten Ambelas Skjøth
University of Worcester
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Carsten Ambelas Skjøth.
Philosophical Transactions of the Royal Society B | 2013
Mark A. Sutton; Stefan Reis; Stuart N. Riddick; U. Dragosits; E. Nemitz; Mark R. Theobald; Y. Sim Tang; Christine F. Braban; Massimo Vieno; Anthony J. Dore; Sarah Wanless; Francis Daunt; D. Fowler; Trevor D. Blackall; C. Milford; Chris Flechard; Benjamin Loubet; Raia Silvia Massad; Pierre Cellier; Erwan Personne; Pierre-François Coheur; Lieven Clarisse; Martin Van Damme; Yasmine Ngadi; Cathy Clerbaux; Carsten Ambelas Skjøth; Camilla Geels; Ole Hertel; Roy Wichink Kruit; Robert W. Pinder
Existing descriptions of bi-directional ammonia (NH3) land–atmosphere exchange incorporate temperature and moisture controls, and are beginning to be used in regional chemical transport models. However, such models have typically applied simpler emission factors to upscale the main NH3 emission terms. While this approach has successfully simulated the main spatial patterns on local to global scales, it fails to address the environment- and climate-dependence of emissions. To handle these issues, we outline the basis for a new modelling paradigm where both NH3 emissions and deposition are calculated online according to diurnal, seasonal and spatial differences in meteorology. We show how measurements reveal a strong, but complex pattern of climatic dependence, which is increasingly being characterized using ground-based NH3 monitoring and satellite observations, while advances in process-based modelling are illustrated for agricultural and natural sources, including a global application for seabird colonies. A future architecture for NH3 emission–deposition modelling is proposed that integrates the spatio-temporal interactions, and provides the necessary foundation to assess the consequences of climate change. Based on available measurements, a first empirical estimate suggests that 5°C warming would increase emissions by 42 per cent (28–67%). Together with increased anthropogenic activity, global NH3 emissions may increase from 65 (45–85) Tg N in 2008 to reach 132 (89–179) Tg by 2100.
Environmental Science & Technology | 2010
Michael S. McLachlan; Amelie Kierkegaard; Kaj M. Hansen; Roger van Egmond; Jesper Christensen; Carsten Ambelas Skjøth
Decamethylcyclopentasiloxane (D(5)) is a volatile compound used in personal care products that is released to the atmosphere in large quantities. Although D(5) is currently under consideration for regulation, there have been no field investigations of its atmospheric fate. We employed a recently developed, quality assured method to measure D(5) concentration in ambient air at a rural site in Sweden. The samples were collected with daily resolution between January and June 2009. The D(5) concentration ranged from 0.3 to 9 ng m(-3), which is 1-3 orders of magnitude lower than previous reports. The measured data were compared with D(5) concentrations predicted using an atmospheric circulation model that included both OH radical and D(5) chemistry. The model was parametrized using emissions estimates and physical chemical properties determined in laboratory experiments. There was good agreement between the measured and modeled D(5) concentrations. The results show that D(5) is clearly subject to long-range atmospheric transport, but that it is also effectively removed from the atmosphere via phototransformation. Atmospheric deposition has little influence on the atmospheric fate. The good agreement between the model predictions and the field observations indicates that there is a good understanding of the major factors governing D(5) concentrations in the atmosphere.
Clinical & Experimental Allergy | 2007
Carsten Ambelas Skjøth; J. Sommer; Alicja Stach; Matt Smith; Jørgen Brandt
Background Birch pollen is highly allergic and has the potential for episodically long‐range transport. Such episodes will in general occur out of the main pollen season. During this time, allergy patients are unprotected and high pollen concentrations will therefore have a full allergenic impact.
Environment International | 2013
Matt Smith; L. Cecchi; Carsten Ambelas Skjøth; Gerhard Karrer; Branko Šikoparija
Common or short ragweed (Ambrosia artemisiifolia L.) is an annual herb belonging to the Asteraceae family that was described by Carl Linnaeus in the 18th century. It is a noxious invasive species that is an important weed in agriculture and a source of highly allergenic pollen. The importance placed on A. artemisiifolia is reflected by the number of international projects that have now been launched by the European Commission and the increasing number of publications being produced on this topic. This review paper examines existing knowledge about ragweed ecology, distribution and flowering phenology and the environmental health risk that this noxious plant poses in Europe. The paper also examines control measures used in the fight against it and state of the art methods for modelling atmospheric concentrations of this important aeroallergen. Common ragweed is an environmental health threat, not only in its native North America but also in many parts of the world where it has been introduced. In Europe, where the plant has now become naturalised and frequently forms part of the flora, the threat posed by ragweed has been identified and steps are being taken to reduce further geographical expansion and limit increases in population densities of the plant in order to protect the allergic population. This is particularly important when one considers possible range shifts, changes in flowering phenology and increases in the amount of pollen and allergenic potency that could be brought about by changes in climate.
International Journal of Biometeorology | 2009
B. Šikoparija; Matt Smith; Carsten Ambelas Skjøth; Predrag Radišić; S. Milkovska; S. Šimić; Jørgen Brandt
This study aims to find likely sources of Ambrosia pollen recorded during 2007 at five pollen-monitoring sites in central Europe: Novi Sad, Ruma, Negotin and Nis (Serbia) and Skopje (Macedonia). Ambrosia plants start flowering early in the morning and so Ambrosia pollen grains recorded during the day are likely to be from a local source. Conversely, Ambrosia pollen grains recorded at night or very early in the morning may have arrived via long-range transport. Ambrosia pollen counts were analysed in an attempt to find possible sources of the pollen and to identify Ambrosia pollen episodes suitable for further investigation using back-trajectory analysis. Diurnal variations and the magnitude of Ambrosia pollen counts during the 2007 Ambrosia pollen season showed that Novi Sad and Ruma (Pannonian Plain) and to a lesser degree Negotin (Balkans) were located near to sources of Ambrosia pollen. Mean bi-hourly Ambrosia pollen concentrations peaked during the middle of the day, and concentrations at these sites were notably higher than at Nis and Skopje. Three episodes were selected for further analysis using back-trajectory analysis. Back-trajectories showed that air masses brought Ambrosia pollen from the north to Nis and, on one occasion, to Skopje (Balkans) during the night and early morning after passing to the east of Novi Sad and Ruma during the previous day. The results of this study identified the southern part of the Pannonian Plain around Novi Sad and Ruma as being a potential source region for Ambrosia pollen recorded at Nis and Skopje in the Balkans.
Environmental Chemistry | 2006
Ole Hertel; Carsten Ambelas Skjøth; Per Løfstrøm; Camilla Geels; Lise Marie Frohn; Thomas Ellermann; Peter Vangsbo Madsen
Abstract. Local ammonia emissions from agricultural activities are often associated with high nitrogen deposition in the close vicinity of the sources. High nitrogen (N) inputs may significantly affect the local ecosystems. Over a longer term, high loads may change the composition of the ecosystems, leading to a general decrease in local biodiversity. In Europe there is currently a significant focus on the impact of atmospheric N load on local ecosystems among environmental managers and policy makers. Model tools designed for application in N deposition assessment and aimed for use in the regulation of anthropogenic nitrogen emissions are, therefore, under development in many European countries. The aim of this paper is to present a review of the current understanding and modelling parameterizations of atmospheric N deposition. A special focus is on the development of operational tools for use in environmental assessment and regulation related to agricultural ammonia emissions. For the often large number of environmental impact assessments needed to be carried out by local environmental managers there is, furthermore, a need for simple and fast model systems. These systems must capture the most important aspects of dispersion and deposition of N in the nearby environment of farms with animal production. The paper includes a discussion on the demands on the models applied in environmental assessment and regulation and how these demands are fulfilled in current state-of-the-art models.
Continental Shelf Research | 2001
G. de Leeuw; Lise Marie Frohn; G.L. Geernaert; B. Jensen; Timothy D. Jickells; G.J. Kunz; S. Lund; M.M. Moerman; B. Pedersen; K. von Salzen; M. Schulz; Carsten Ambelas Skjøth; Lucinda J. Spokes; S. Tamm; E. Vignati; Leo H. Cohen; Ole Hertel; L. Klein; F. Mueller; K.H. Schluenzen; L.L. Sørensen
The aim of the atmospheric nitrogen inputs into the coastal ecosystem (ANICE) project is to improve transport-chemistry models that estimate nitrogen deposition to the sea. To achieve this, experimental and modelling work is being conducted which aims to improve understanding of the processes involved in the chemical transformation, transport and deposition of atmospheric nitrogen compounds. Of particular emphasis within ANICE is the influence of coastal zone processes. Both short episodes with high deposition and chronic nitrogen inputs are considered in the project. The improved transport-chemistry models will be used to assess the atmospheric inputs of nitrogen compounds into the European regional seas (the North Sea is studied as a prototype) and evaluate the impact of various emission reduction strategies on the atmospheric nitrogen loads. Assessment of the impact of atmospheric nitrogen on coastal ecosystems will be based on comparisons of phytoplankton nitrogen requirements, other external nitrogen inputs to the ANICE area of interest and the direct nitrogen fluxes provided by ANICE. Selected results from both the experimental and modelling components are presented here. The experimental results show the large spatial and temporal variability in the concentrations of gaseous nitrogen compounds, and their influences on fluxes. Model calculations show the strong variation of both concentrations and gradients of nitric acid at fetches of up to 25km. Aerosol concentrations also show high temporal variability and experimental evidence for the reaction between nitric acid and sea salt aerosol is provided by size-segregated aerosol composition measured at both sides of the North Sea. In several occasions throughout the experimental period, air mass back trajectory analysis showed connected flow between the two sampling sites (the Weybourne Atmospheric Observatory on the North Norfolk coast of the UK and Meetpost Noordwijk, a research tower at 9km off the Dutch coast). Results from the METRAS/SEMA mesoscale chemistry transport model system for one of these cases are presented. Measurements of aerosol and rain chemical composition, using equipment mounted on a commercial ferry, show variations in composition across the North Sea. These measurements have been compared to results obtained with the transport-chemistry model ACDEP which calculates the atmospheric inputs into the whole North Sea area. Finally, the results will be made available for the assessment of the impact of atmospheric nitrogen on coastal ecosystems.
Atmospheric Environment | 2003
Lise Lotte Sørensen; Ole Hertel; Carsten Ambelas Skjøth; Mikael Lund; B. Pedersen
Abstract Concentrations of ammonia in air and ammonium in surface water were measured from a platform in the Southern North Sea close to the Dutch coast. Fluxes were derived from the measurements applying Monin–Obukhov similarity theory and exchange velocities calculated. The fluxes and air concentrations of ammonia were compared to results obtained from the Lagrangian transport-chemistry model ACDEP with and without a parameterisation of outgoing fluxes of ammonia from the sea. The results indicate that the flux may in fact be upward during periods with low atmospheric ammonia concentrations and that the calculated overall ammonia dry deposition may be overestimated by a factor two or more in the coastal region. A more detailed study is needed in order to quantify how this may influence overall deposition to given marine waters. In some cases the deposition may solely be redistributed whereas the total deposition is only marginally influenced.
International Journal of Biometeorology | 2014
Santiago Fernández-Rodríguez; Carsten Ambelas Skjøth; Rafael Tormo-Molina; Rui Brandao; Elsa Caeiro; Inmaculada Silva-Palacios; Ángela Gonzalo-Garijo; Matt Smith
This study aims to determine the potential origin of Olea pollen recorded in Badajoz in the Southwest of the Iberian Peninsula during 2009–2011. This was achieved using a combination of daily average and diurnal (hourly) airborne Olea pollen counts recorded at Badajoz (south-western Spain) and Évora (south-eastern Portugal), an inventory of olive groves in the studied area and air mass trajectory calculations computed using the HYSPLIT model. Examining olive pollen episodes at Badajoz that had distinctly different diurnal cycles in olive pollen in relation to the mean, allowed us to identify three different scenarios where olive pollen can be transported to the city from either distant or nearby sources during conditions with slow air mass movements. Back trajectory analysis showed that olive pollen can be transported to Badajoz from the West on prevailing winds, either directly or on slow moving air masses, and from high densities of olive groves situated to the Southeast (e.g. Andalucía). Regional scale transport of olive pollen can result in increased nighttime concentrations of this important aeroallergen. This could be particularly important in Mediterranean countries where people can be outdoors during this time due to climate and lifestyle. Such studies that examine sources and the atmospheric transport of pollen are valuable for allergy sufferers and health care professionals because the information can be incorporated into forecasts, the outputs of which are used for avoiding exposure to aeroallergens and planning medication. The results of studies of this nature can also be used for examining gene flow in this important agricultural crop.
International Journal of Biometeorology | 2013
Rewi M. Newnham; Tim Sparks; Carsten Ambelas Skjøth; Katie Head; Beverley Adams-Groom; Matt Smith
In light of heightened interest in the response of pollen phenology to temperature, we investigated recent changes to the onset of Betula (birch) pollen seasons in central and southern England, including a test of predicted advancement of the Betula pollen season for London. We calculated onset of birch pollen seasons using daily airborne pollen data obtained at London, Plymouth and Worcester, determined trends in the start of the pollen season and compared timing of the birch pollen season with observed temperature patterns for the period 1995–2010. We found no overall change in the onset of birch pollen in the study period although there was evidence that the response to temperature was nonlinear and that a lower asymptotic start of the pollen season may exist. The start of the birch pollen season was strongly correlated with March mean temperature. These results reinforce previous findings showing that the timing of the birch pollen season in the UK is particularly sensitive to spring temperatures. The climate relationship shown here persists over both longer decadal-scale trends and shorter, seasonal trends as well as during periods of ‘sign-switching’ when cooler spring temperatures result in later start dates. These attributes, combined with the wide geographical coverage of airborne pollen monitoring sites, some with records extending back several decades, provide a powerful tool for the detection of climate change impacts, although local site factors and the requirement for winter chilling may be confounding factors.