Carsten Gräser
Free University of Berlin
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Carsten Gräser.
Numerische Mathematik | 2011
Qingsong Zou; Andreas Veeser; Ralf Kornhuber; Carsten Gräser
We present a hierarchical a posteriori error analysis for the minimum value of the energy functional in symmetric obstacle problems. The main result is that the error in the energy minimum is, up to oscillation terms, equivalent to an appropriate hierarchical estimator. The proof does not invoke any saturation assumption. We even show that small oscillation implies a related saturation assumption. In addition, we prove efficiency and reliability of an a posteriori estimate of the discretization error and thereby cast some light on the theoretical understanding of previous hierarchical estimators. Finally, we illustrate our theoretical results by numerical computations.
SIAM Journal on Numerical Analysis | 2009
Carsten Gräser; Ralf Kornhuber
We present a new class of iterative schemes for large scale set-valued saddle point problems as arising, e.g., from optimization problems in the presence of linear and inequality constraints. Our algorithms can be regarded either as nonsmooth Newton-type methods for the nonlinear Schur complement or as Uzawa-type iterations with active set preconditioners. Numerical experiments with a control constrained optimal control problem and a discretized Cahn-Hilliard equation with obstacle potential illustrate the reliability and efficiency of the new approach.
Archive | 2009
Carsten Gräser; Uli Sack; Oliver Sander
We present a new inexact nonsmooth Newton method for the solution of convex minimization problems with piecewise smooth, pointwise nonlinearities. The algorithm consists of a nonlinear smoothing step on the fine level and a linear coarse correction. Suitable postprocessing guarantees global convergence even in the case of a single multigrid step for each linear subproblem. Numerical examples show that the overall efficiency is comparable to multigrid for similar linear problems.
Archive | 2007
Carsten Gräser; Ralf Kornhuber
We consider preconditioned Uzawa iterations for a saddle point problem with inequality constraints as arising from an implicit time discretization of the Cahn-Hilliard equation with an obstacle potential. We present a new class of preconditioners based on linear Schur complements associated with successive approximations of the coincidence set. In numerical experiments, we found superlinear convergence and finite termination.
Journal of Computational Physics | 2013
Guillaume Jouvet; Carsten Gräser
In this paper, we consider a model for the time evolution of three-dimensional marine ice sheets. This model combines the Shallow Ice Approximation (SIA) for the ice deformation, the Shallow Shelf Approximation (SSA) for the basal sliding, and the mass conservation principle. At each time step, we solve a scalar p-Laplace minimization-type problem with obstacle (SIA), a vectorial p-Laplace minimization-type problem (SSA) and a transport equation (mass conservation). The two minimization problems are solved using a truncated nonsmooth Newton multigrid method while the transport equation is solved using a vertex-centred finite volume method. Our approach is combined to an heuristic mesh adaptive refinement procedure to face the large gradients of the solution that are expected between the ice sheet and the ice shelf. As applications, we present some simulations of the Marine Ice Sheet Model Intercomparison Project MISMIP (2D and 3D) and validate our results against an analytic solution (2D) and other participant model results (3D). Further numerical results show that the convergence of our Newton multigrid method is insensitive to local refinements making our overall adaptive strategy fully efficient.
Computing | 2009
Carsten Gräser; Oliver Sander
We present an extension module for the Dune system. This module, called dune-subgrid, allows to mark elements of another Dune hierarchical grid. The set of marked elements can then be accessed as a Dune grid in its own right. dune-subgrid is free software and is available for download (External Dune Modules: www.dune-project.org/downloadext.html). We describe the functionality and use of dune-subgrid, comment on its implementation, and give two example applications. First, we show how dune-subgrid can be used for micro-FE simulations of trabecular bone. Then we present an algorithm that allows to use exact residuals for the adaptive solution of the spatial problems of time-discretized evolution equations.
Archive for Rational Mechanics and Analysis | 2016
Charles M. Elliott; Carsten Gräser; Graham Hobbs; Ralf Kornhuber; Maren-Wanda Wolf
A variety of models for the membrane-mediated interaction of particles in lipid membranes, mostly well-established in theoretical physics, is reviewed from a mathematical perspective. We provide mathematically consistent formulations in a variational framework, relate apparently different modelling approaches in terms of successive approximation, and investigate existence and uniqueness. Numerical computations illustrate that the new variational formulations are directly accessible to effective numerical methods.
Archive | 2010
Carsten Gräser; Ralf Kornhuber; Uli Sack
We suggest hierarchical a posteriori error estimators for time-discretized Allen–Cahn and Cahn–Hilliard equations with logarithmic potential and investigate their robustness numerically. We observe that the associated effectivity ratios seem to saturate for decreasing mesh size and are almost independent of the temperature.
Archive | 2008
Carsten Gräser
We present a new approach for the globalization of the primal-dual active set or equivalently the nonsmooth Newton method applied to an optimal control problem. The basic result is the equivalence of this method to a nonsmooth Newton method applied to the nonlinear Schur complement of the optimality system. Our approach does not require the construction of an additional merit function or additional descent direction. The nonsmooth Newton directions are naturally appropriate descent directions for a smooth dual energy and guarantee global convergence if standard damping methods are applied.
arXiv: Mathematical Software | 2015
Christian Engwer; Carsten Gräser; Steffen Müthing; Oliver Sander
The dune-functions dune module introduces a new programmer interface for discrete and non-discrete functions. Unlike the previous interfaces considered in the existing dune modules, it is based on overloading operator(), and returning values by-value. This makes user code much more readable, and allows the incorporation of newer C++ features such as lambda expressions. Run-time polymorphism is implemented not by inheritance, but by type erasure, generalizing the ideas of the std::function class from the C++11 standard library. We describe the new interface, show its possibilities, and measure the performance impact of type erasure and return-by-value.