Carsten Lindschau
Hannover Medical School
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Carsten Lindschau.
Journal of Clinical Investigation | 1999
Gerd Wallukat; Volker Homuth; Thorsten Fischer; Carsten Lindschau; Björn Horstkamp; Axel Jüpner; Evi Baur; Eberhard Nissen; Klaus Vetter; Dajana Neichel; Joachim W. Dudenhausen; Hermann Haller; Friedrich C. Luft
Immune mechanisms and the renin-angiotensin system are implicated in preeclampsia. We investigated 25 preeclamptic patients and compared them with 12 normotensive pregnant women and 10 pregnant patients with essential hypertension. Antibodies were detected by the chronotropic responses to AT1 receptor-mediated stimulation of cultured neonatal rat cardiomyocytes coupled with receptor-specific antagonists. Immunoglobulin from all preeclamptic patients stimulated the AT1 receptor, whereas immunoglobulin from controls had no effect. The increased autoimmune activity decreased after delivery. Affinity-column purification and anti-human IgG and IgM antibody exposure implicated an IgG antibody directed at the AT1 receptor. Peptides corresponding to sites on the AT1 receptors second extracellular loop abolished the stimulatory effect. Western blotting with purified patient IgG and a commercially obtained AT1 receptor antibody produced bands of identical molecular weight. Furthermore, confocal microscopy of vascular smooth muscle cells showed colocalization of purified patient IgG and AT1 receptor antibody. The protein kinase C (PKC) inhibitor calphostin C prevented the stimulatory effect. Our results suggest that preeclamptic patients develop stimulatory autoantibodies against the second extracellular AT1 receptor loop. The effect appears to be PKC-mediated. These novel autoantibodies may participate in the angiotensin II-induced vascular lesions in these patients.
The FASEB Journal | 1997
Marek Drab; Hermann Haller; Rostislav Bychkov; Bettina Erdmann; Carsten Lindschau; Hannelore Haase; Ingo Morano; Friedrich C. Luft; A M Wobus
Vascular smooth muscle cell (VSMC) differentiation is important in understanding vascular disease; however, no in vitro model is available. Totipotent mouse embryonic stem (ES) cells were used to establish such a model. To test whether the ES cell‐derived smooth muscle cells expressed VSMC‐specific properties, the differentiated cells were characterized by 1) morphological analysis, 2) gene expression, 3) immunostaining for VSMC‐specific proteins, 4) expression of characteristic VSMC ion channels, and 5) formation of [Ca2+]i transients in response to VSMC‐specific agonists. Treatment of embryonic stem cell‐derived embryoid bodies with retinoic acid and dibutyryl‐cyclic adenosine monophosphate (db‐cAMP) induced differentiation of spontaneously contracting cell clusters in 67% of embryoid bodies compared with 10% of untreated controls. The highest differentiation rate was observed when retinoic acid and db‐cAMP were applied to the embryoid bodies between days 7 and 11 in combination with frequent changes of culture medium. Other protocols with retinoic acid and db‐cAMP, as well as single or combined treatment with VEGF, ECGF, bFGF, aFGF, fibronectin, matrigel, or hypoxia did not influence the differentiation rate. Single‐cell RT‐PCR and sequencing of the PCR products identified myosin heavy chain (MHC) splice variants distinguishing between gut and VSMC isoforms. RT‐PCR with VSMC‐specific MHC primers and immunostaining confirmed the presence of VSMC transcripts and MHC protein. Furthermore, VSMC expressing MHC had typical ion channels and responded to specific agonists with an increased [Ca2+]i. Here we present a retinoic acid + db‐cAMP‐inducible embryonic stem cell model of in vitro vasculogenesis. ES cell‐derived cells expressing VSMC‐specific MHC and functional VSMC properties may be a suitable system to study mechanisms of VSMC differentiation.—Drab, M., Haller, H., Bychkov, R., Erdmann, B., Lindschau, C., Haase, H., Morano, I., Luft, F. C., Wobus, A. M. From totipotent embryonic stem cells to spontaneously contracting smooth muscle cells: a retinoic acid and db‐cAMP in vitro differentiation model. FASEB J. 11, 905–915 (1997)
Circulation | 2004
Istvan Mazak; Anette Fiebeler; Dominik Müller; Joon-Keun Park; Erdenechimeg Shagdarsuren; Carsten Lindschau; Ralf Dechend; Christiane Viedt; Bernhard Pilz; Hermann Haller; Friedrich C. Luft
Background—In a double-transgenic human renin and human angiotensinogen rat model, we found that mineralocorticoid receptor (MR) blockade ameliorated angiotensin II (Ang II)–induced renal and cardiac damage. How Ang II and aldosterone (Ald) might interact is ill defined. Methods and Results—We investigated the effects of Ang II (10−7 mol/L) and Ald (10−7 mol/L) on extracellular signal–regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) signaling in vascular smooth muscle cells (VSMCs) with Western blotting and confocal microscopy. Ang II induced ERK 1/2 and JNK phosphorylation by 2 minutes. Ald achieved the same at 10 minutes. Ang II+Ald had a potentiating effect by 2 minutes. Two oxygen radical scavengers and the epidermal growth factor receptor (EGFR) antagonist AG1478 reduced Ang II–, Ald-, and combination-induced ERK1/2 phosphorylation. Preincubating the cells with the MR blocker spironolactone (10−6 mol/L) abolished Ang II–induced ROS generation, EGFR transactivation, and ERK1/2 phosphorylation. Conclusions—Ald potentiates Ang II–induced ERK-1/2 and JNK phosphorylation. Oxygen radicals, the MR, and the EGFR play a role in early signaling induced by Ang II and Ald in VSMCs. These in vitro data may help explain the effects of MR blockade on Ang II–induced end-organ damage in vivo.
Circulation | 2004
Ferdinand H. Bahlmann; Rong Song; Sascha M. Boehm; Michael Mengel; Reinhard von Wasielewski; Carsten Lindschau; Torsten Kirsch; Kirsten de Groot; Robert Laudeley; Eva Niemczyk; Faikah Güler; Jan Menne; Hermann Haller; Danilo Fliser
Background—The hematopoietic cytokine erythropoietin has cytoprotective effects in endothelial cells in vitro that are mediated through direct activation of the pro-survival Akt tyrosine kinase signaling pathway. We tested the hypothesis that low-dose therapy with the long-acting recombinant human erythropoietin analogue darbepoetin alpha protects vascular endothelium in vivo in a classic remnant kidney rat model characterized by severe endothelial damage, progressive vascular sclerosis, and ischemia-induced tissue fibrosis. Methods and Results—Using a parallel group study design, we randomly assigned animals after 5/6 nephrectomy to treatment with either saline (n=36) or 0.1 μg/kg body wt darbepoetin (n=24) subcutaneously once weekly. We monitored hematocrit, blood pressure, and serum creatinine regularly and obtained renal tissue 6 weeks after nephrectomy for morphological and immunohistochemical analysis. Darbepoetin-treated animals had significantly improved survival compared with saline-treated controls (63% versus 33%; P<0.05), although hematocrit levels were similar in both groups. Darbepoetin treatment ameliorated endothelial damage; attenuated the composite tissue injury score (saline 1.9±0.4; darbepoetin 0.4±0.2; P<0.001), which included vascular sclerosis, glomerulosclerosis, and tubulointerstitial damage; and preserved renal function. We found persistent activation of the pro-survival Akt signaling pathway in endothelial and epithelial glomerular cells in darbepoetin-treated animals, accompanied by a significant reduction of apoptotic cell death in renal tissue. Conclusions—Low-dose darbepoetin treatment confers vascular and tissue protection that is associated with persistent stimulation of the pro-survival Akt signaling pathway. The use of recombinant human erythropoietin or analogues may have utility in preventing ischemia-related progressive vascular injury and organ failure.
Circulation Research | 1997
Albrecht Hempel; Christian Maasch; Ute Heintze; Carsten Lindschau; Rainer Dietz; Friedrich C. Luft; Hermann Haller
Endothelial cell permeability is impaired in diabetes mellitus and may be increased by high extracellular glucose concentrations. High glucose activates protein kinase C (PKC), a family of kinases vital to intracellular signaling. We tested the hypothesis that high glucose concentration activates PKC in endothelial cells and leads to an increase in endothelial cell permeability via distinct PKC isoforms. Porcine aortic endothelial cells were used, and the PKC isoforms alpha, delta, epsilon, zeta, and theta were identified in these cells. Glucose caused a rapid dose-dependent increase in endothelial cell permeability, with an EC50 of 17.5 mmol/L. Phorbol 12-myristate 13-acetate (TPA) induced an increase in permeability very similar to that elicited by glucose. The effect of glucose and TPA was totally reversed by preincubating the cells with the PKC inhibitors staurosporine (10(-8) mol/L) and Goe 6976 (10(-8) mol/L). Downregulation of PKC by preincubation with TPA for 24 hours also abolished the effect of glucose and TPA on endothelial cell permeability. High glucose (20 mmol/L) caused an increase in PKC activity at 2, 10, and 30 minutes. Cell fractionation and Western blot analysis showed a glucose-induced translocation of PKC alpha and PKC epsilon. Confocal microscopy confirmed the translocation and showed an association of PKC alpha and PKC epsilon with nuclear structures and the cell membrane. Specific antisense oligodesoxynucleotides (ODNs) against PKC alpha reduced the expression of the isoform, abolished the effects of glucose on endothelial cell permeability completely, and reduced the TPA effect significantly. In contrast, specific antisense ODNs against PKC epsilon had no effect on glucose-induced permeability and only a minor effect on the TPA-induced increase in permeability. We conclude that an increase in extracellular glucose leads to a rapid dose-dependent increase in endothelial cell permeability via the activiation of PKC and that this effect is mediated by the PKC isoform alpha.
Circulation Research | 1996
Hermann Haller; Carsten Lindschau; Bettina Erdmann; Petra Quass; Friedrich C. Luft
Angiotensin (Ang) II is present inside vascular smooth muscle cells (VSMCs); however, its intracellular functions, if any, are unknown. We tested the hypothesis that intracellular Ang II exerts effects on cytosolic Ca2+ ([Ca2+]i) in VSMCs. Ang II was administered via microinjection. Intracellular Ang II localization was demonstrated by fluorescein-labeled Ang II and electron microscopy. [Ca2+]i was monitored by confocal microscopy with fluo 3. Ang II was identified in endosomes and in the nucleus by both localizing techniques. Microinjection of Ang II (10(-10) mol/L) led to a rapid increase in [Ca2+]i in the cytosol and in the nucleus. The [Ca2+]i increase was due to the influx of extracellular Ca2+ ions. The intracellular Ang II effect was totally inhibited by the concomitant injection of the Ang II antagonist CV-11947. Desensitization of extracellular Ang II receptors, on the other hand, did not influence the intracellular effects, nor did extracellular CV-11947. The increase in [Ca2+]i was observed not only in the microinjected cell but also in directly adjacent VSMCs. In contrast to the microinjected cells, the [Ca2+]i increase in the adjacent cells was mostly due to release from intracellular stores. Pretreatment with thapsigargin abolished the Ang II response in adjacent cells. Microinjection of inositol tris-phosphate induced a [Ca2+]i response in adjacent cells that was similar to the Ang II-induced effects. Preincubation of VSMCs with the uncoupling substances dimethyl sulfoxide and heptanol did not decrease the Ang II response but instead prevented a [Ca2+]i surge in adjacent cells. We conclude that intracellular Ang II binds to intracellular Ang II receptors and elicits an increased [Ca2+]i in the injected cell and, thereafter, cells in the immediate neighborhood. Cell-cell contact is necessary for the Ang II-mediated effects. The data suggest that intracellular Ang II may stimulate a cluster of VSMCs from a single cell via the release of second messengers.
The FASEB Journal | 1998
Maik Gollasch; Hannelore Haase; Christian Ried; Carsten Lindschau; Ingo Morano; Friedrich C. Luft; Hermann Haller
Despite intensive interest in understanding the differentiation of vascular smooth muscle cells (VSMC), no information is available about differential regulation of ion channels in these cells. Since expression of the L‐type Ca2+ channel can be influenced by differentiation in other cell types, we tested the hypothesis that the L‐type (C class) channel is a specific differentiation marker of VSMC and that expression of these channels depends on the state of cell differentiation. We used rat aortic (A7r5) VSMC, which express functional L‐type Ca2+ channels, and induced dedifferentiation by cell culture in different media. Treatment with retinoic acid was used to redifferentiate the VSMC. We characterized the differentiated state of the cells by using immunohistochemistry and Western blot analysis for smooth muscle (SM) α‐actin and SM‐myosin heavy chain (MHC). The number of functional Ca2+ channels was significantly decreased in dedifferentiated VSMC and increased upon differentiation with retinoic acid. Ca2+ channel function was assessed by whole‐cell voltage clamp techniques. Using Western blot and dihydropyridine binding analysis, we found that the expression of the Ca2+ channel α1 subunit, and to a lesser extent the β2 subunit, was directly correlated with the expression of SM α‐actin and SM‐MHC. We conclude that expression of L‐type Ca2+ channel α1 subunits, and thus a functional Ca2+ channel, is highly coordinated with expression of the SM‐specific proteins required for specialized smooth muscle cell functions. Furthermore, our results demonstrate that the L‐type Ca2+ channel is a novel marker for differentiation of VSMC. The data suggest that regulation of ion channel expression during differentiation may have physiological importance for normal smooth muscle function and may influence VSMC behavior under pathophysiological conditions.
Circulation Research | 1995
Hermann Haller; Carsten Lindschau; Petra Quass; Armin Distler; Friedrich C. Luft
Dedifferentiation and proliferation of vascular smooth muscle cells (VSMCs) are important features of atherosclerosis. The molecular mechanisms are largely unclear; however, protein kinase C (PKC) is a key enzyme in the intracellular signaling pathways that mediate this process. We studied the activity and immunoreactivity of PKC-alpha in primary cultures of VSMCs from rat aortas under different conditions of growth and differentiation. PKC-alpha was determined under the following conditions: (1) during the growth phase and after confluence of cultured (passages 1 through 3) VSMCs, (2) before and after induction of differentiation in VSMCs by retinoic acid, and (3) in primary cultures of VSMCs from spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats during early passages. PKC activity was measured by in vitro substrate phosphorylation. PKC-alpha immunoreactivity was assessed by Western blot using specific polyclonal antibodies and by immunostaining with confocal microscopy. Cell proliferation was measured by direct count. The cell phenotype was characterized by immunostaining and Western blot for alpha-actin and desmin. PKC-alpha expression and PKC activity during VSMC growth showed a decrease during rapid growth and an increase in confluent cells. This pattern was associated with the respective changes in cell differentiation. Retinoic acid induced an increase in PKC-alpha expression together with a more differentiated phenotype. Subcultured, rapidly growing VSMCs from SHR showed a decreased PKC-alpha expression compared with cells from WKY rats. To establish cause and effect, we next microinjected either PKC-alpha or inactivated material directly into dedifferentiated cells. We found that cells injected with active PKC-alpha expressed increased amounts of actin compared with control cells.(ABSTRACT TRUNCATED AT 250 WORDS)
Hypertension | 2011
Katrin Wenzel; Augustine Rajakumar; Hannelore Haase; Nele Geusens; Norbert Hubner; Herbert Schulz; Justin Brewer; Lyndsay Roberts; Carl A. Hubel; Florian Herse; Lydia Hering; Fatimunnisa Qadri; Carsten Lindschau; Gerd Wallukat; Robert Pijnenborg; Harald Heidecke; Gabriela Riemekasten; Friedrich C. Luft; Dominik Müller; Babette LaMarca; Ralf Dechend
Pregnant women who subsequently develop preeclampsia are highly sensitive to infused angiotensin (Ang) II; the sensitivity persists postpartum. Activating autoantibodies against the Ang II type 1 (AT1) receptor are present in preeclampsia. In vitro and in vivo data suggest that they could be involved in the disease process. We generated and purified activating antibodies against the AT1 receptor (AT1-AB) by immunizing rabbits against the AFHYESQ epitope of the second extracellular loop, which is the binding epitope of endogenous activating autoantibodies against AT1 from patients with preeclampsia. We then purified AT1-AB using affinity chromatography with the AFHYESQ peptide. We were able to detect AT1-AB both by ELISA and a functional bioassay. We then passively transferred AT1-AB into pregnant rats, alone or combined with Ang II. AT1-AB activated protein kinase C-&agr; and extracellular-related kinase 1/2. Passive transfer of AT1-AB alone or Ang II (435 ng/kg per minute) infused alone did not induce a preeclampsia-like syndrome in pregnant rats. However, the combination (AT1-AB plus Ang II) induced hypertension, proteinuria, intrauterine growth retardation, and arteriolosclerosis in the uteroplacental unit. We next performed gene-array profiling of the uteroplacental unit and found that hypoxia-inducible factor 1&agr; was upregulated by Ang II plus AT1-AB, which we then confirmed by Western blotting in villous explants. Furthermore, endothelin 1 was upregulated in endothelial cells by Ang II plus AT1-AB. We show that AT1-AB induces Ang II sensitivity. Our mechanistic study supports the existence of an “autoimmune-activating receptor” that could contribute to Ang II sensitivity and possible to preeclampsia.
Circulation Research | 1998
Hermann Haller; Carsten Lindschau; Christian Maasch; Heike Olthoff; Doris Kurscheid; Friedrich C. Luft
The extracellular matrix influences the cellular spreading of vascular smooth muscle cells (VSMCs) via integrin receptors. However, the intracellular signaling mechanisms are still incompletely understood. We investigated the hypothesis that VSMCs binding to fibronectin activates the protein kinase C (PKC) pathway, causes differential intracellular PKC isoform translocation, and mediates cell spreading. VSMCs binding to poly-L-lysine or preincubated with Arg-Gly-Asp (RGD) peptides were used as controls. Diacylglycerol (DAG) and phospholipase D (PLD) activity were measured by thin-layer chromatography. Intracellular distribution of PKC isoforms was assessed by confocal microscopy. VSMCs binding to fibronectin induced focal adhesions and cell spreading within 30 minutes. Fibronectin induced a rapid increase in DAG content, peaking at 10 minutes with a sustained response for <1 hour. In contrast, PLD activity was not influenced by specific binding to fibronectin. PKC isoforms alpha, delta, epsilon, and zeta were assessed by confocal microscopy. Fibronectin induced a PKC isoform translocation to the cell nucleus and to focal adhesions within minutes. The nuclear PKCalpha immunoreactivity was transiently increased. PKC isoforms a and epsilon were both translocated to focal adhesions. The intracellular distributions of other PKC isoforms were not influenced by fibronectin. The effects of fibronectin on DAG generation, the translocation of PKCalpha and PKCepsilon, and cell spreading were all abolished by the incubation with RGD peptides. Downregulation of PKC isoforms alpha and epsilon with specific antisense oligodinucleotides resulted in a significant inhibition of cell spreading. Our results show that integrins induce intracellular signaling in VSMCs via DAG and PKC. PKC isoform a is translocated to the nucleus, whereas PKC isoforms alpha and epsilon are translocated to focal adhesions. Both isoforms seem to play a role in inside-out integrin signaling and cell spreading.