Carsten Pedersen
University of Copenhagen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Carsten Pedersen.
Science | 2010
Pietro D. Spanu; James Abbott; Joelle Amselem; Timothy A. Burgis; Darren M. Soanes; Kurt Stüber; Emiel Ver Loren van Themaat; J. K. M. Brown; Sarah Butcher; Sarah J. Gurr; Marc-Henri Lebrun; Christopher J. Ridout; Paul Schulze-Lefert; Nicholas J. Talbot; Nahal Ahmadinejad; Christian Ametz; Geraint Barton; Mariam Benjdia; Przemyslaw Bidzinski; Laurence V. Bindschedler; Maike Both; Marin Talbot Brewer; Lance Cadle-Davidson; Molly M. Cadle-Davidson; Jérôme Collemare; Rainer Cramer; Omer Frenkel; Dale I. Godfrey; James Harriman; Claire Hoede
From Blight to Powdery Mildew Pathogenic effects of microbes on plants have widespread consequences. Witness, for example, the cultural upheavals driven by potato blight in the 1800s. A variety of microbial pathogens continue to afflict crop plants today, driving both loss of yield and incurring the increased costs of control mechanisms. Now, four reports analyze microbial genomes in order to understand better how plant pathogens function (see the Perspective by Dodds). Raffaele et al. (p. 1540) describe how the genome of the potato blight pathogen accommodates transfer to different hosts. Spanu et al. (p. 1543) analyze what it takes to be an obligate biotroph in barley powdery mildew, and Baxter et al. (p. 1549) ask a similar question for a natural pathogen of Arabidopsis. Schirawski et al. (p. 1546) compared genomes of maize pathogens to identify virulence determinants. Better knowledge of what in a genome makes a pathogen efficient and deadly is likely to be useful for improving agricultural crop management and breeding. A group of papers analyzes pathogen genomes to find the roots of virulence, opportunism, and life-style determinants. Powdery mildews are phytopathogens whose growth and reproduction are entirely dependent on living plant cells. The molecular basis of this life-style, obligate biotrophy, remains unknown. We present the genome analysis of barley powdery mildew, Blumeria graminis f.sp. hordei (Blumeria), as well as a comparison with the analysis of two powdery mildews pathogenic on dicotyledonous plants. These genomes display massive retrotransposon proliferation, genome-size expansion, and gene losses. The missing genes encode enzymes of primary and secondary metabolism, carbohydrate-active enzymes, and transporters, probably reflecting their redundancy in an exclusively biotrophic life-style. Among the 248 candidate effectors of pathogenesis identified in the Blumeria genome, very few (less than 10) define a core set conserved in all three mildews, suggesting that most effectors represent species-specific adaptations.
BMC Genomics | 2012
Carsten Pedersen; Emiel Ver Loren van Themaat; Liam J. McGuffin; James Abbott; Timothy A. Burgis; Geraint Barton; Laurence V. Bindschedler; Xunli Lu; Takaki Maekawa; Ralf Weßling; Rainer Cramer; Hans Thordal-Christensen; Ralph Panstruga; Pietro D. Spanu
BackgroundProtein effectors of pathogenicity are instrumental in modulating host immunity and disease resistance. The powdery mildew pathogen of grasses Blumeria graminis causes one of the most important diseases of cereal crops. B. graminis is an obligate biotrophic pathogen and as such has an absolute requirement to suppress or avoid host immunity if it is to survive and cause disease.ResultsHere we characterise a superfamily predicted to be the full complement of Candidates for Secreted Effector Proteins (CSEPs) in the fungal barley powdery mildew parasite B. graminis f.sp. hordei. The 491 genes encoding these proteins constitute over 7% of this pathogen’s annotated genes and most were grouped into 72 families of up to 59 members. They were predominantly expressed in the intracellular feeding structures called haustoria, and proteins specifically associated with the haustoria were identified by large-scale mass spectrometry-based proteomics. There are two major types of effector families: one comprises shorter proteins (100–150 amino acids), with a high relative expression level in the haustoria and evidence of extensive diversifying selection between paralogs; the second type consists of longer proteins (300–400 amino acids), with lower levels of differential expression and evidence of purifying selection between paralogs. An analysis of the predicted protein structures underscores their overall similarity to known fungal effectors, but also highlights unexpected structural affinities to ribonucleases throughout the entire effector super-family. Candidate effector genes belonging to the same family are loosely clustered in the genome and are associated with repetitive DNA derived from retro-transposons.ConclusionsWe employed the full complement of genomic, transcriptomic and proteomic analyses as well as structural prediction methods to identify and characterize the members of the CSEPs superfamily in B. graminis f.sp. hordei. Based on relative intron position and the distribution of CSEPs with a ribonuclease-like domain in the phylogenetic tree we hypothesize that the associated genes originated from an ancestral gene, encoding a secreted ribonuclease, duplicated successively by repetitive DNA-driven processes and diversified during the evolution of the grass and cereal powdery mildew lineage.
PLOS ONE | 2009
Soledad Sacristán; Marielle Vigouroux; Carsten Pedersen; Pari Skamnioti; Hans Thordal-Christensen; Cristina Micali; J. K. M. Brown; Christopher J. Ridout
Parasites are able to evolve rapidly and overcome host defense mechanisms, but the molecular basis of this adaptation is poorly understood. Powdery mildew fungi (Erysiphales, Ascomycota) are obligate biotrophic parasites infecting nearly 10,000 plant genera. They obtain their nutrients from host plants through specialized feeding structures known as haustoria. We previously identified the AVR k1 powdery mildew-specific gene family encoding effectors that contribute to the successful establishment of haustoria. Here, we report the extensive proliferation of the AVR k1 gene family throughout the genome of B. graminis, with sequences diverging in formae speciales adapted to infect different hosts. Also, importantly, we have discovered that the effectors have coevolved with a particular family of LINE-1 retrotransposons, named TE1a. The coevolution of these two entities indicates a mutual benefit to the association, which could ultimately contribute to parasite adaptation and success. We propose that the association would benefit 1) the powdery mildew fungus, by providing a mechanism for amplifying and diversifying effectors and 2) the associated retrotransposons, by providing a basis for their maintenance through selection in the fungal genome.
Molecular Plant Pathology | 2012
Wen-J Ing Zhang; Carsten Pedersen; Mark Kwaaitaal; Per L. Gregersen; Sara M. Mørch; Susanne Hanisch; Astrid Kristensen; Anja T. Fuglsang; David B. Collinge; Hans Thordal-Christensen
A large number of effector candidates have been identified recently in powdery mildew fungi. However, their roles and how they perform their functions remain unresolved. In this study, we made use of host-induced gene silencing and confirmed that the secreted barley powdery mildew effector candidate, CSEP0055, contributes to the aggressiveness of the fungus. This result suggests that CSEP0055 is involved in the suppression of plant defence. A yeast two-hybrid screen indicated that CSEP0055 interacts with members of the barley pathogenesis-related protein families, PR1 and PR17. Interaction with PR17c was confirmed by bimolecular fluorescence complementation analyses. Down-regulation and over-expression of PR17c in epidermal cells of barley confirmed that this protein is important for penetration resistance against the powdery mildew fungus. In line with this, PR17c was found to be apoplastic, localizing to the papillae formed in response to this fungus. The CSEP0055 transcript did not start to accumulate until 24 h after inoculation. This suggests that this gene is expressed too late to influence primary penetration events, but rather sustains the fungus at sites of secondary penetration, where PR17c appears to be able to accumulate.
Molecular Plant | 2008
Ziguo Zhang; Andrea Lenk; Mats X. Andersson; Torben Gjetting; Carsten Pedersen; Mads Nielsen; Mari-Anne Newman; Bi-Huei Hou; Shauna Somerville; Hans Thordal-Christensen
The lesion-mimic Arabidopsis mutant, syp121 syp122, constitutively expresses the salicylic acid (SA) signaling pathway and has low penetration resistance to powdery mildew fungi. Genetic analyses of the lesion-mimic phenotype have expanded our understanding of programmed cell death (PCD) in plants. Inactivation of SA signaling genes in syp121 syp122 only partially rescues the lesion-mimic phenotype, indicating that additional defenses contribute to the PCD. Whole genome transcriptome analysis confirmed that SA-induced transcripts, as well as numerous other known pathogen-response transcripts, are up-regulated after inactivation of the syntaxin genes. A suppressor mutant analysis of syp121 syp122 revealed that FMO1, ALD1, and PAD4 are important for lesion development. Mutant alleles of EDS1, NDR1, RAR1, and SGT1b also partially rescued the lesion-mimic phenotype, suggesting that mutating syntaxin genes stimulates TIR-NB-LRR and CC-NB-LRR-type resistances. The syntaxin double knockout potentiated a powdery mildew-induced HR-like response. This required functional PAD4 but not functional SA signaling. However, SA signaling potentiated the PAD4-dependent HR-like response. Analyses of quadruple mutants suggest that EDS5 and SID2 confer separate SA-independent signaling functions, and that FMO1 and ALD1 mediate SA-independent signals that are NPR1-dependent. These studies highlight the contribution of multiple pathways to defense and point to the complexity of their interactions.
Plant Physiology | 2015
Ali Abdurehim Ahmed; Carsten Pedersen; Torsten Schultz-Larsen; Mark Kwaaitaal; Hans Jørgen Lyngs Jørgensen; Hans Thordal-Christensen
A candidate effector protein contributes to fungal aggressiveness by targeting and inhibiting a host small heat shock protein. Pathogens secrete effector proteins to establish a successful interaction with their host. Here, we describe two barley (Hordeum vulgare) powdery mildew candidate secreted effector proteins, CSEP0105 and CSEP0162, which contribute to pathogen success and appear to be required during or after haustorial formation. Silencing of either CSEP using host-induced gene silencing significantly reduced the fungal haustorial formation rate. Interestingly, both CSEPs interact with the barley small heat shock proteins, Hsp16.9 and Hsp17.5, in a yeast two-hybrid assay. Small heat shock proteins are known to stabilize several intracellular proteins, including defense-related signaling components, through their chaperone activity. CSEP0105 and CSEP0162 localized to the cytosol and the nucleus of barley epidermal cells, whereas Hsp16.9 and Hsp17.5 are cytosolic. Intriguingly, only those specific CSEPs changed localization and became restricted to the cytosol when coexpressed with Hsp16.9 and Hsp17.5, confirming the CSEP-small heat shock protein interaction. As predicted, Hsp16.9 showed chaperone activity, as it could prevent the aggregation of Escherichia coli proteins during thermal stress. Remarkably, CSEP0105 compromised this activity. These data suggest that CSEP0105 promotes virulence by interfering with the chaperone activity of a barley small heat shock protein essential for defense and stress responses.
Plant Physiology | 2016
Miao Guan; Thomas C. de Bang; Carsten Pedersen; Jan K. Schjoerring
Cytosolic glutamine synthetase Gln1;2 is the main isozyme contributing to shoot GS1 activity in Arabidopsis and can be up-regulated to relieve ammonium toxicity. Cytosolic GS1 (Gln synthetase) is central for ammonium assimilation in plants. High ammonium treatment enhanced the expression of the GS1 isogene Gln-1;2 encoding a low-affinity high-capacity GS1 protein in Arabidopsis (Arabidopsis thaliana) shoots. Under the same conditions, the expression of the high-affinity low-capacity isoform Gln-1;1 was reduced. The expression of Gln-1;3 did not respond to ammonium treatment while Gln-1;4 and Gln-1;5 isogenes in all cases were expressed at a very low level. Gln-2 was highly expressed in shoots but only at a very low level in roots. To investigate the specific functions of the two isogenes Gln-1;1 and Gln-1;2 in shoots for ammonium detoxification, single and double knock-out mutants were grown under standard N supply or with high ammonium provision. Phenotypes of the single mutant gln1;1 were similar to the wild type, while growth of the gln1;2 single mutant and the gln1;1:gln1;2 double mutant was significantly impaired irrespective of N regime. GS1 activity was significantly reduced in both gln1;2 and gln1;1:gln1;2. Along with this, the ammonium content increased while that of Gln decreased, showing that Gln-1;2 was essential for ammonium assimilation and amino acid synthesis. We conclude that Gln-1;2 is the main isozyme contributing to shoot GS1 activity in vegetative growth stages and can be up-regulated to relieve ammonium toxicity. This reveals, to our knowledge, a novel shoot function of Gln-1;2 in Arabidopsis shoots.
Frontiers in Plant Science | 2013
Wen-Jing Zhang; Susanne Hanisch; Mark Kwaaitaal; Carsten Pedersen; Hans Thordal-Christensen
Biotrophic pathogens, like the powdery mildew fungi, require living plant cells for their growth and reproduction. During infection, a specialized structure called the haustorium is formed by the fungus. The haustorium is surrounded by a plant cell-derived extrahaustorial membrane (EHM). Over the EHM, the fungus obtains nutrients from and secretes effector proteins into the plant cell. In the plant cell these effectors interfere with cellular processes such as pathogen defense and membrane trafficking. However, the mechanisms behind effector delivery are largely unknown. This paper provides a model for and new insights into a putative transfer mechanism of effectors into the plant cell. We show that silencing of the barley Sec61βa transcript results in decreased susceptibility to the powdery mildew fungus. HvSec61βa is a component of both the endoplasmic reticulum (ER) translocon and retrotranslocon pores, the latter being part of the ER-associated protein degradation machinery. We provide support for a model suggesting that the retrotranslocon function of HvSec61βa is required for successful powdery mildew fungal infection. HvSec61βa-GFP and a luminal ER marker were co-localized to the ER, which was found to be in close proximity to the EHM around the haustorial body, but not the haustorial fingers. This differential EHM proximity suggests that the ER, including HvSec61βa, may be actively recruited by the haustorium, potentially to provide efficient effector transfer to the cytosol. Effector transport across this EHM-ER interface may occur by a vesicle-mediated process, while the Sec61 retrotranslocon pore potentially provides an escape route for these proteins to reach the cytosol.
Plant Systematics and Evolution | 2015
Bjarne Due Larsen; Jihad Orabi; Carsten Pedersen; Marian Ørgaard
Series Crocus comprises ten autumn-flowering species, including the cultivated Crocus sativus, Saffron-Crocus. Interspecific genetic variation was examined in all species of the series, except for C. naqabensis. Intraspecific genetic and morphological variation was considered in the three Greek endemics, C. cartwrightianus, C. hadriaticus and C. oreocreticus. Genetic variation was evaluated based on amplified fragment length polymorphism and simple sequence repeats analyses, including 94 and 233 specimens, respectively. Analysis of molecular variance demonstrated significant genetic variation within populations, compared with low genetic variation between populations suggesting substantial gene flow between populations. In Neighbour-Net analysis, C. hadriaticus samples from mainland Greece were separated from Peloponnesian samples; C. cartwrightianus, C. hadriaticus and C. oreocreticus generally were grouped with C. sativus samples. Pollination and maintenance of genetic variation are discussed. The large intraspecific variation found within the three specifically studied species reflects dynamic population structures with potential to meet future ecological fluctuations. It emphasises a large gene pool which should be considered by including a larger number of accessions in genetic diversity studies.
PLOS ONE | 2016
Ali Abdurehim Ahmed; Carsten Pedersen; Hans Thordal-Christensen
Effectors play significant roles in the success of pathogens. Recent advances in genome sequencing have revealed arrays of effectors and effector candidates from a wide range of plant pathogens. Yet, the vast majority of them remain uncharacterized. Among the ~500 Candidate Secreted Effector Proteins (CSEPs) predicted from the barley powdery mildew fungal genome, only a few have been studied and shown to have a function in virulence. Here, we provide evidence that CSEP0081 and CSEP0254 contribute to infection by the fungus. This was studied using Host-Induced Gene Silencing (HIGS), where independent silencing of the transcripts for these CSEPs significantly reduced the fungal penetration and haustoria formation rate. Both CSEPs are likely required during and after the formation of haustoria, in which their transcripts were found to be differentially expressed, rather than in epiphytic tissue. When expressed in barley leaf epidermal cells, both CSEPs appears to move freely between the cytosol and the nucleus, suggesting that their host targets locate in these cellular compartments. Collectively, our data suggest that, in addition to the previously reported effectors, the barley powdery mildew fungus utilizes these two CSEPs as virulence factors to enhance infection.