Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cary L. Pint is active.

Publication


Featured researches published by Cary L. Pint.


Nano Letters | 2009

Role of water in super growth of single-walled carbon nanotube carpets.

Placidus B. Amama; Cary L. Pint; Laura McJilton; Seung Min Kim; Eric A. Stach; P. Terry Murray; Robert H. Hauge; Benji Maruyama

The Ostwald ripening behavior of Fe catalyst films deposited on thin alumina supporting layers is demonstrated as a function of thermal annealing in H2 and H2/H2O. The addition of H2O in super growth of single-walled carbon nanotube carpets is observed to inhibit Ostwald ripening due to the ability of oxygen and hydroxyl species to reduce diffusion rates of catalyst atoms. This work shows the impact of typical carpet growth environments on catalyst film evolution and the role Ostwald ripening may play in the termination of carpet growth.


Nano Letters | 2011

Optically- and thermally-responsive programmable materials based on carbon nanotube-hydrogel polymer composites

Xiaobo Zhang; Cary L. Pint; Min Hyung Lee; Bryan Edward Schubert; Arash Jamshidi; Kuniharu Takei; Hyunhyub Ko; Andrew G. Gillies; Rizia Bardhan; Jeffrey J. Urban; Ming C. Wu; Ronald S. Fearing; Ali Javey

A simple approach is described to fabricate reversible, thermally- and optically responsive actuators utilizing composites of poly(N-isopropylacrylamide) (pNIPAM) loaded with single-walled carbon nanotubes. With nanotube loading at concentrations of 0.75 mg/mL, we demonstrate up to 5 times enhancement to the thermal response time of the nanotube-pNIPAM hydrogel actuators caused by the enhanced mass transport of water molecules. Additionally, we demonstrate the ability to obtain ultrafast near-infrared optical response in nanotube-pNIPAM hydrogels under laser excitation enabled by the strong absorption properties of nanotubes. The work opens the framework to design complex and programmable self-folding materials, such as cubes and flowers, with advanced built-in features, including tunable response time as determined by the nanotube loading.


Nano Letters | 2009

Carbon nanotube terahertz polarizer.

Lei Ren; Cary L. Pint; Layla G. Booshehri; William D. Rice; X. Wang; David J. Hilton; Kei Takeya; Iwao Kawayama; Masayoshi Tonouchi; Robert H. Hauge; Junichiro Kono

We describe a film of highly aligned single-walled carbon nanotubes that acts as an excellent terahertz linear polarizer. There is virtually no attenuation (strong absorption) when the terahertz polarization is perpendicular (parallel) to the nanotube axis. From the data, the reduced linear dichrosim was calculated to be 3, corresponding to a nematic order parameter of 1, which demonstrates nearly perfect alignment as well as intrinsically anisotropic terahertz response of single-walled carbon nanotubes in the film.


Nano Letters | 2012

Broadband Terahertz Polarizers with Ideal Performance Based on Aligned Carbon Nanotube Stacks

Lei Ren; Cary L. Pint; Takashi Arikawa; Kei Takeya; Iwao Kawayama; Masayoshi Tonouchi; Robert H. Hauge; Junichiro Kono

We demonstrate a terahertz polarizer built with stacks of aligned single-walled carbon nanotubes (SWCNTs) exhibiting ideal broadband terahertz properties: 99.9% degree of polarization and extinction ratios of 10(-3) (or 30 dB) from ~0.4 to 2.2 THz. Compared to structurally tuned and fragile wire-grid systems, the performance in these polarizers is driven by the inherent anistropic absorption of SWCNTs that enables a physically robust structure. Supported by a scalable dry contact-transfer approach, these SWCNT-based polarizers are ideal for emerging terahertz applications.


Scientific Reports | 2013

Surface engineered porous silicon for stable, high performance electrochemical supercapacitors

Landon Oakes; Andrew S. Westover; Jeremy W. Mares; Shahana Chatterjee; William R. Erwin; Rizia Bardhan; Sharon M. Weiss; Cary L. Pint

Silicon materials remain unused for supercapacitors due to extreme reactivity of silicon with electrolytes. However, doped silicon materials boast a low mass density, excellent conductivity, a controllably etched nanoporous structure, and combined earth abundance and technological presence appealing to diverse energy storage frameworks. Here, we demonstrate a universal route to transform porous silicon (P-Si) into stable electrodes for electrochemical devices through growth of an ultra-thin, conformal graphene coating on the P-Si surface. This graphene coating simultaneously passivates surface charge traps and provides an ideal electrode-electrolyte electrochemical interface. This leads to 10–40X improvement in energy density, and a 2X wider electrochemical window compared to identically-structured unpassivated P-Si. This work demonstrates a technique generalizable to mesoporous and nanoporous materials that decouples the engineering of electrode structure and electrochemical surface stability to engineer performance in electrochemical environments. Specifically, we demonstrate P-Si as a promising new platform for grid-scale and integrated electrochemical energy storage.


Nature Communications | 2011

Towards hybrid superlattices in graphene

Zhengzong Sun; Cary L. Pint; Daniela C. Marcano; Chenguang Zhang; Jun Yao; Gedeng Ruan; Zheng Yan; Yu Zhu; Robert H. Hauge; James M. Tour

The controllable and reversible modification of graphene by chemical functionalization can modulate its optical and electronic properties. Here we demonstrate the controlled patterning of graphane/graphene superlattices within a single sheet of graphene. By exchanging the sp(3) C-H bonds in graphane with sp(3) C-C bonds through functionalization, sophisticated multifunctional superlattices can be fabricated on both the macroscopic and microscopic scales. These patterns are visualized using fluorescence quenching microscopy techniques and confirmed using Raman spectroscopy. By tuning the extent of hydrogenation, the density of the sp(3) C functional groups on graphenes basal plane can be controlled from 0.4% to 3.5% with this two-step method. Using such a technique, which allows for both spatial and density control of the functional groups, a route to multifunctional electrical circuits and chemical sensors with specifically patterned recognition sites might be realized across a single graphene sheet, facilitating the development of graphene-based devices.


ACS Nano | 2015

Ultrafine Iron Pyrite (FeS2) Nanocrystals Improve Sodium–Sulfur and Lithium–Sulfur Conversion Reactions for Efficient Batteries

Anna Douglas; Rachel Carter; Landon Oakes; Keith Share; Adam P. Cohn; Cary L. Pint

Nanocrystals with quantum-confined length scales are often considered impractical for metal-ion battery electrodes due to the dominance of solid-electrolyte interphase (SEI) layer effects on the measured storage properties. Here we demonstrate that ultrafine sizes (∼4.5 nm, average) of iron pyrite, or FeS2, nanoparticles are advantageous to sustain reversible conversion reactions in sodium ion and lithium ion batteries. This is attributed to a nanoparticle size comparable to or smaller than the diffusion length of Fe during cation exchange, yielding thermodynamically reversible nanodomains of converted Fe metal and NaxS or LixS conversion products. This is compared to bulk-like electrode materials, where kinetic and thermodynamic limitations of surface-nucleated conversion products inhibit successive conversion cycles. Reversible capacities over 500 and 600 mAh/g for sodium and lithium storage are observed for ultrafine nanoparticles, with improved cycling and rate capability. Unlike alloying or intercalation processes, where SEI effects limit the performance of ultrafine nanoparticles, our work highlights the benefit of quantum dot length-scale nanocrystal electrodes for nanoscale metal sulfide compounds that store energy through chemical conversion reactions.


ACS Nano | 2016

Role of Nitrogen-Doped Graphene for Improved High-Capacity Potassium Ion Battery Anodes

Keith Share; Adam P. Cohn; Rachel Carter; Bridget R. Rogers; Cary L. Pint

Potassium is an earth abundant alternative to lithium for rechargeable batteries, but a critical limitation in potassium ion battery anodes is the low capacity of KC8 graphite intercalation compounds in comparison to conventional LiC6. Here we demonstrate that nitrogen doping of few-layered graphene can increase the storage capacity of potassium from a theoretical maximum of 278 mAh/g in graphite to over 350 mAh/g, competitive with anode capacity in commercial lithium ion batteries and the highest reported anode capacity so far for potassium ion batteries. Control studies distinguish the importance of nitrogen dopant sites as opposed to sp3 carbon defect sites to achieve the improved performance, which also enables >6× increase in rate performance of doped vs undoped materials. Finally, in situ Raman spectroscopy studies elucidate the staging sequence for doped and undoped materials and demonstrate the mechanism of the observed capacity enhancement to be correlated with distributed storage at local nitrogen sites in a staged KC8 compound. This study demonstrates a pathway to overcome the limitations of graphitic carbons for anodes in potassium ion batteries by atomically precise engineering of nanomaterials.


ACS Nano | 2010

Spontaneous dissolution of ultralong single- and multiwalled carbon nanotubes.

A. Nicholas G. Parra-Vasquez; Natnael Behabtu; Micah J. Green; Cary L. Pint; Colin C. Young; Judith Schmidt; Ellina Kesselman; Anubha Goyal; Pulickel M. Ajayan; Yachin Cohen; Yeshayahu Talmon; Robert H. Hauge; Matteo Pasquali

We report that chlorosulfonic acid is a true solvent for a wide range of carbon nanotubes (CNTs), including single-walled (SWNTs), double-walled (DWNTs), multiwalled carbon nanotubes (MWNTs), and CNTs hundreds of micrometers long. The CNTs dissolve as individuals at low concentrations, as determined by cryo-TEM (cryogenic transmission electron microscopy), and form liquid-crystalline phases at high concentrations. The mechanism of dissolution is electrostatic stabilization through reversible protonation of the CNT side walls, as previously established for SWNTs. CNTs with highly defective side walls do not protonate sufficiently and, hence, do not dissolve. The dissolution and liquid-crystallinity of ultralong CNTs are critical advances in the liquid-phase processing of macroscopic CNT-based materials, such as fibers and films.


ACS Nano | 2010

Dry Contact Transfer Printing of Aligned Carbon Nanotube Patterns and Characterization of Their Optical Properties for Diameter Distribution and Alignment

Cary L. Pint; Ya-Qiong Xu; Sharief Moghazy; Tonya K. Cherukuri; Noe T. Alvarez; Erik Haroz; Salma Mahzooni; Stephen K. Doorn; Junichiro Kono; Matteo Pasquali; Robert H. Hauge

A scalable and facile approach is demonstrated where as-grown patterns of well-aligned structures composed of single-walled carbon nanotubes (SWNT) synthesized via water-assisted chemical vapor deposition (CVD) can be transferred, or printed, to any host surface in a single dry, room-temperature step using the growth substrate as a stamp. We demonstrate compatibility of this process with multiple transfers for large-scale device and specifically tailored pattern fabrication. Utilizing this transfer approach, anisotropic optical properties of the SWNT films are probed via polarized absorption, Raman, and photoluminescence spectroscopies. Using a simple model to describe optical transitions in the large SWNT species present in the aligned samples, polarized absorption data are demonstrated as an effective tool for accurate assignment of the diameter distribution from broad absorption features located in the infrared. This can be performed on either well-aligned samples or unaligned doped samples, allowing simple and rapid feedback of the SWNT diameter distribution that can be challenging and time-consuming to obtain in other optical methods. Furthermore, we discuss challenges in accurately characterizing alignment in structures of long versus short carbon nanotubes through optical techniques, where SWNT length makes a difference in the information obtained in such measurements. This work provides new insight to the efficient transfer and optical properties of an emerging class of long, large diameter SWNT species typically produced in the CVD process.

Collaboration


Dive into the Cary L. Pint's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge