Caryn Naekyung Kim
Emory University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Caryn Naekyung Kim.
Cell | 1996
Xuesong Liu; Caryn Naekyung Kim; Jie Yang; Ronald Jemmerson; Xiaodong Wang
A cell-free system based on cytosols of normally growing cells is established that reproduces aspects of the apoptotic program in vitro. The apoptotic program is initiated by addition of dATP. Fractionation of cytosol yielded a 15 kDa protein that is required for in vitro apoptosis. The absorption spectrum and protein sequence revealed that this protein is cytochrome c. Elimination of cytochrome c from cytosol by immunodepletion, or inclusion of sucrose to stabilize mitochondria during cytosol preparation, diminished the apoptotic activity. Adding back cytochrome c to the cytochrome c-depleted extracts restored their apoptotic activity. Cells undergoing apoptosis in vivo showed increased release of cytochrome c to their cytosol, suggesting that mitochondria may function in apoptosis by releasing cytochrome c.
The EMBO Journal | 1998
Siddharth Balachandran; Caryn Naekyung Kim; Wen Chen Yeh; Tak W. Mak; Kapil N. Bhalla; Glen N. Barber
The dsRNA‐dependent protein kinase (PKR) is considered to play a key role in interferon‐mediated host defense against viral infection and conceivably malignant transformation. To investigate further the mechanisms of PKR‐induced growth inhibition, we have developed tetracycline‐inducible murine cell lines that express wild‐type PKR or a catalytically inactive PKR variant, PKRΔ6. Following induction, the growth of the wild‐type PKR‐expressing cells was similar to that of cells transfected with vector alone, while cells expressing PKRΔ6 became malignantly transformed. Significantly, treatment with dsRNA caused the wild‐type PKR‐overexpressing cells to undergo programed cell death while, conversely, cells expressing PKRΔ6 were completely resistant. Our studies demonstrated that activation of PKR induces the expression of members of the tumor necrosis factor receptor (TNFR) family, including Fas (CD95/Apo‐1) and pro‐apopotic Bax. In contrast, transcripts representing Fas, TNFR‐1, FADD (Fas‐associated death domain), FLICE, Bad and Bax were ablated in cells expressing PKRΔ6. The involvement of the death receptors in PKR‐induced apoptosis was underscored by demonstrating that murine fibroblasts lacking FADD were almost completely resistant to dsRNA‐mediated cell death. Thus, PKR, a key cellular target for viral repression, is a receptor/inducer for the induction of pro‐apoptotic genes by dsRNA and probably functions in interferon‐mediated host defense to trigger cell death in response to virus infection and perhaps tumorigenesis.
Journal of Biological Chemistry | 1996
Xuesong Liu; Caryn Naekyung Kim; Jan Pohl; Xiaodong Wang
CPP32, a member of the interleukin-1β-converting enzyme (ICE) family of cysteine proteases, cleaves poly(ADP-ribose) polymerase and sterol regulatory element binding proteins during apoptosis. CPP32 normally exists in the cytosol as a 32-kDa inactive precursor and only becomes activated when cells are undergoing apoptosis. The activation is a proteolytic event that generates a p20/p11 heterodimer. We report here the identification, purification, and characterization of a hamster CPP32-activating protease (CAP) that cleaves and activates CPP32. The biochemical properties of CAP suggest that it is another member of the ICE family of proteases. Purified CAP consists of two prominent polypeptides of 19 and 13 kDa. Protein sequencing revealed that CAP is derived from the hamster homolog of Mch2α, a member of the ICE family recently identified based on the sequence conservation among the ICE family members. CAP activity is inhibited by CrmA, a cowpox virus protein that prevents host cell apoptosis. CAP itself is also activated through proteolytic cleavage. These data are consistent with the idea that the activation of the ICE family of proteases during apoptosis proceeds through a cascade of proteolytic events.
Leukemia | 1998
Ana Maria Ibrado; Caryn Naekyung Kim; Kapil N. Bhalla
The antimicrotubule anticancer drug, Taxol, suppresses microtubule dynamics, causes mitotic arrest, and induces caspase-3 cleavage and activity resulting in apoptosis of human AML HL-60 cells. Caspase-3 cleavage is triggered by the mitochondrial release and cytosolic accumulation of the electron transfer protein, cytochrome c (cyt c). Taxol-induced G2/M transition is mediated by p34cdc-2 (CDK1) which, if prematurely activated, may also trigger apoptosis. In the present studies following S-phase synchronization and release, HL-60 cells with enforced expression of the bcl-xL (HL-60/Bcl-xL) and/or neomycin resistance gene (HL-60/neo) were exposed to Taxol to examine CDK1-related cell-cycle events and the cyt c-triggered molecular cascade of apoptosis. At various time-intervals after Taxol treatment, immunoblot analyses of cyclin B1 and CDK1 levels were performed. In addition, the in vitro histone H1 kinase activity of immunoprecipitated CDK1 and its tyrosine phosphorylation status (by anti-phosphotyrosine immunoblot analysis) were determined. Data presented here show that, while Taxol-induced peak CDK1 kinase activity occurs earlier in HL-60/neo cells, there are no significant differences in cyclin B1 accumulation, tyrosine dephosphorylation of CDK1, and mitotic arrest of Taxol-treated HL-60/neo vs HL-60/Bcl-xL cells. Taxol-induced CDK1 activation and mitosis preceded the cytosolic accumulation (six-fold) of cyt c. The latter event was blocked by Bcl-xL overexpression but not by inhibitors of caspase-3. Although the caspase inhibitors and high Bcl-xL levels inhibited caspase-3 cleavage and activity, they did not significantly affect Taxol-induced CDK1 activation or mitotic arrest. These findings indicate that Bcl-xL overexpression does not affect Taxol-induced CDK1 activity leading to G2/M transition, which temporally precedes the cytosolic cyt c-mediated cleavage and activity of caspase-3 and apoptosis.
Leukemia Research | 1999
Caryn Naekyung Kim; Kapil N. Bhalla; Robert J. Kreitman; Mark C. Willingham; Philip D. Hall; Edward P. Tagge; Tao Jia; Authur E. Frankel
Human granulocyte-macrophage colony-stimulating factor fused to truncated diphtheria toxin (DT388-GM-CSF) sensitized wild-type and Bcl2-overexpressing HL60 human leukemia cells to intoxication by Ara-C based on proliferation and clonogenic assays. The toxin/drug combination showed dramatic synergistic toxicity with combination indices of < 0.1. Synergy was not seen with two other protein synthesis inhibiting drugs--ricin and cycloheximide nor with GMCSF alone. No changes in Ara-C incorporation into cellular DNA or cell cycle occupancy were seen. As compared to exposure to DT388-GM-CSF or Ara-C alone, co-treatment produced significant increases in cytosolic accumulation of cytochrome c, a higher percentage of cells with loss of mitochondrial membrane potential and an increase in reactive oxygen species and morphologic changes of apoptosis, and a greater induction of poly(ADP-ribose) polymerase (PARP) and DNA fragmentation factor 45 (DFF45) cleavage activities of caspase 3. Co-treatment did not significantly alter Bcl2, Bcl-xL, Bax or Fas receptor (FasR), but modestly increased Fas ligand (FasL) protein. These finding suggest that co-treatment with DT388-GM-CSF may lead to a lowered apoptotic threshold and clonogenic survival of human AML blasts due to Ara-C. These observations also suggest that clinical trials of combination therapy may be warranted in patients with AML.
International Journal of Radiation Oncology Biology Physics | 1998
Stuart H. Burri; Caryn Naekyung Kim; Guofu Fang; Brian S. Chang; Charles Perkins; Wayne Harris; Lawrence W. Davis; Craig B. Thompson; Kapil N. Bhalla
PURPOSE/OBJECTIVE To investigate the effect of the enforced expression of p29Bcl-xL or its loop deletional mutant, p18Bcl-xLdelta, on irradiation-induced apoptosis and cell-cycle distribution of HL-60 cells. MATERIALS & METHODS We compared the irradiation-induced molecular cascade of apoptosis in control human AML HL-60/neo versus Bcl-xL overexpressing (approximately 8-fold) (HL-60/Bcl-xL) and HL-60/Bcl-XLdelta cells that express the loop domain deletional mutant construct (delta26-83 AA) of Bcl-xL. The three cell lines were irradiated with 6MV photons to varying doses up to 20 Gy. Following this, cytosolic cyt c levels, caspase-3 activity, and the Bcl-2 family of proteins were evaluated utilizing Western blot analysis (whole cell lysate or cytosolic S-100 fraction). Apoptosis was assessed by internucleosomal DNA fragmentation, Annexin-V staining and FACS analysis, as well as by morphologic criteria. The cell-cycle effects of radiation were analyzed by flow cytometry. RESULTS Eight hours following irradiation (12 Gy) of HL-60/neo cells, a marked increase (approximately 8-fold) in the cytosolic accumulation of cyt c in the S-100 fraction was observed. This was associated with the cleavage of caspase-3, as well as the generation of its poly (ADP-ribose) polymerase (PARP) and DFF (DNA fragmentation factor)-45 cleavage activity. Twenty-four to forty-eight hours after irradiation, internucleosomal DNA fragmentation and positive Annexin-V staining (32.3+/-3.3%) was detected in HL-60/neo cells. In contrast, in both HL-60/Bcl-xL and HL-60/Bcl-xLdelta cells, a significantly lower percentage of apoptotic cells (p<0.05) were detected and internucleosomal DNA fragmentation was not induced. Following irradiation, Western analysis neither demonstrated any significant alteration in Bcl-2, p29Bcl-xL, p18Bcl-xLdelta, or Bax; nor induced CD95 (Fas receptor) or Fas ligand expression in any cell type. However, in all cell types, irradiation produced approximately a 2-fold increase in the percentage of cells in the G2/M phase of the cell cycle. CONCLUSION These results demonstrate that an intact loop domain is not necessary for the full antiapoptotic function of Bcl-xL against irradiation-induced cytosolic accumulation of cyt c, caspase activation, and apoptosis of HL-60 cells. Additionally, the cell-cycle effects of ionizing radiation in HL-60 cells are not affected by enforced expression of Bcl-xL or Bcl-xLdelta.
Science | 1997
Jie Yang; Xuesong Liu; Kapil N. Bhalla; Caryn Naekyung Kim; Ana Maria Ibrado; Jiyang Cai; Tsung I. Peng; Dean P. Jones; Xiaodong Wang
Blood | 1998
Gustavo P. Amarante-Mendes; Caryn Naekyung Kim; Linda Liu; Yue Huang; Charles Perkins; Douglas R. Green; Kapil N. Bhalla
Cancer Research | 1997
Caryn Naekyung Kim; Xiaodong Wang; Yue Huang; Ana Maria Ibrado; Linda Liu; Guofu Fang; Kapil N. Bhalla
Blood | 2000
Charles Perkins; Caryn Naekyung Kim; Guofu Fang; Kapil N. Bhalla