Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Casandra Philipson is active.

Publication


Featured researches published by Casandra Philipson.


PLOS Computational Biology | 2013

Systems modeling of molecular mechanisms controlling cytokine-driven CD4+ T cell differentiation and phenotype plasticity.

Adria Carbo; Raquel Hontecillas; Barbara Kronsteiner; Monica Viladomiu; Mireia Pedragosa; Pinyi Lu; Casandra Philipson; Stefan Hoops; Madhav V. Marathe; Stephen Eubank; Keith R. Bisset; Katherine Wendelsdorf; Abdul Salam Jarrah; Yongguo Mei; Josep Bassaganya-Riera

Differentiation of CD4+ T cells into effector or regulatory phenotypes is tightly controlled by the cytokine milieu, complex intracellular signaling networks and numerous transcriptional regulators. We combined experimental approaches and computational modeling to investigate the mechanisms controlling differentiation and plasticity of CD4+ T cells in the gut of mice. Our computational model encompasses the major intracellular pathways involved in CD4+ T cell differentiation into T helper 1 (Th1), Th2, Th17 and induced regulatory T cells (iTreg). Our modeling efforts predicted a critical role for peroxisome proliferator-activated receptor gamma (PPARγ) in modulating plasticity between Th17 and iTreg cells. PPARγ regulates differentiation, activation and cytokine production, thereby controlling the induction of effector and regulatory responses, and is a promising therapeutic target for dysregulated immune responses and inflammation. Our modeling efforts predict that following PPARγ activation, Th17 cells undergo phenotype switch and become iTreg cells. This prediction was validated by results of adoptive transfer studies showing an increase of colonic iTreg and a decrease of Th17 cells in the gut mucosa of mice with colitis following pharmacological activation of PPARγ. Deletion of PPARγ in CD4+ T cells impaired mucosal iTreg and enhanced colitogenic Th17 responses in mice with CD4+ T cell-induced colitis. Thus, for the first time we provide novel molecular evidence in vivo demonstrating that PPARγ in addition to regulating CD4+ T cell differentiation also plays a major role controlling Th17 and iTreg plasticity in the gut mucosa.


Gut microbes | 2014

Zinc deficiency alters host response and pathogen virulence in a mouse model of enteroaggregative escherichia coli-induced diarrhea

David T. Bolick; Glynis L. Kolling; John H. Moore; Luís Antônio de Oliveira; Kenneth S. K. Tung; Casandra Philipson; Monica Viladomiu; Raquel Hontecillas; Josep Bassaganya-Riera; Richard L. Guerrant

Enteroaggregative Escherichia coli (EAEC) is increasingly recognized as a major cause of diarrheal disease globally. In the current study, we investigated the impact of zinc deficiency on the host and pathogenesis of EAEC. Several outcomes of EAEC infection were investigated including weight loss, EAEC shedding and tissue burden, leukocyte recruitment, intestinal cytokine expression, and virulence expression of the pathogen in vivo. Mice fed a protein source defined zinc deficient diet (dZD) had an 80% reduction of serum zinc and a 50% reduction of zinc in luminal contents of the bowel compared to mice fed a protein source defined control diet (dC). When challenged with EAEC, dZD mice had significantly greater weight loss, stool shedding, mucus production, and, most notably, diarrhea compared to dC mice. Zinc deficient mice had reduced infiltration of leukocytes into the ileum in response to infection suggesting an impaired immune response. Interestingly, expression of several EAEC virulence factors were increased in luminal contents of dZD mice. These data show a dual effect of dietary zinc in benefitting the host while impairing virulence of the pathogen. The study demonstrates the critical importance of zinc and may help elucidate the benefits of zinc supplementation in cases of childhood diarrhea and malnutrition.


Current Drug Targets | 2014

Lanthionine Synthetase Component C-Like Protein 2: A New Drug Target for Inflammatory Diseases and Diabetes

Pinyi Lu; Raquel Hontecillas; Casandra Philipson; Josep Bassaganya-Riera

Lanthionine synthetase component C-like protein 2 (LANCL2) is a member of the LANCL protein family, which is broadly expressed throughout the body. LANCL2 is the molecular target of abscisic acid (ABA), a compound with insulin-sensitizing and immune modulatory actions. LANCL2 is required for membrane binding and signaling of ABA in immune cells. Direct binding of ABA to LANCL2 was predicted in silico using molecular modeling approaches and validated experimentally using ligand-binding assays and kinetic surface plasmon resonance studies. The therapeutic potential of the LANCL2 pathway ranges from increasing cellular sensitivity to anticancer drugs, insulin-sensitizing effects and modulating immune and inflammatory responses in the context of immune-mediated and infectious diseases. A case for LANCL2-based drug discovery and development is also illustrated by the anti-inflammatory activity of novel LANCL2 ligands such as NSC61610 against inflammatory bowel disease and influenza-driven inflammation in mice. This review discusses the value of LANCL2 as a novel therapeutic target for the discovery and development of new classes of orally active drugs against chronic metabolic, immune-mediated and infectious diseases.


Inflammatory Bowel Diseases | 2014

Emerging significance of NLRs in inflammatory bowel disease.

Beckley K. Davis; Casandra Philipson; Raquel Hontecillas; Kristin Eden; Josep Bassaganya-Riera; Irving C. Allen

Abstract:Pattern recognition receptors are essential mediators of host defense and inflammation in the gastrointestinal system. Recent data have revealed that toll-like receptors and nucleotide-binding domain and leucine-rich repeat-containing proteins (NLRs) function to maintain homeostasis between the host microbiome and mucosal immunity. The NLR proteins are a diverse class of cytoplasmic pattern recognition receptors. In humans, only about half of the identified NLRs have been adequately characterized. The majority of well-characterized NLRs participate in the formation of a multiprotein complex, termed the inflammasome, which is responsible for the maturation of interleukin-1&bgr; and interleukin-18. However, recent observations have also uncovered the presence of a novel subgroup of NLRs that function as positive or negative regulators of inflammation through modulating critical signaling pathways, including NF-&kgr;B. Dysregulation of specific NLRs from both proinflammatory and inhibitory subgroups have been associated with the development of inflammatory bowel disease (IBD) in genetically susceptible human populations. Our own preliminary retrospective data mining efforts have identified a diverse range of NLRs that are significantly altered at the messenger RNA level in colons from patients with IBD. Likewise, studies using genetically modified mouse strains have revealed that multiple NLR family members have the potential to dramatically modulate the immune response during IBD. Targeting NLR signaling represents a promising and novel therapeutic strategy. However, significant effort is necessary to translate the current understanding of NLR biology into effective therapies.


BMC Bioinformatics | 2015

Multiscale modeling of mucosal immune responses.

Yongguo Mei; Vida Abedi; Adria Carbo; Xiaoying Zhang; Pinyi Lu; Casandra Philipson; Raquel Hontecillas; Stefan Hoops; Nathan Liles; Josep Bassaganya-Riera

Computational modeling techniques are playing increasingly important roles in advancing a systems-level mechanistic understanding of biological processes. Computer simulations guide and underpin experimental and clinical efforts. This study presents ENteric Immune Simulator (ENISI), a multiscale modeling tool for modeling the mucosal immune responses. ENISIs modeling environment can simulate in silico experiments from molecular signaling pathways to tissue level events such as tissue lesion formation. ENISIs architecture integrates multiple modeling technologies including ABM (agent-based modeling), ODE (ordinary differential equations), SDE (stochastic modeling equations), and PDE (partial differential equations). This paper focuses on the implementation and developmental challenges of ENISI. A multiscale model of mucosal immune responses during colonic inflammation, including CD4+ T cell differentiation and tissue level cell-cell interactions was developed to illustrate the capabilities, power and scope of ENISI MSM.BackgroundComputational techniques are becoming increasingly powerful and modeling tools for biological systems are of greater needs. Biological systems are inherently multiscale, from molecules to tissues and from nano-seconds to a lifespan of several years or decades. ENISI MSM integrates multiple modeling technologies to understand immunological processes from signaling pathways within cells to lesion formation at the tissue level. This paper examines and summarizes the technical details of ENISI, from its initial version to its latest cutting-edge implementation.ImplementationObject-oriented programming approach is adopted to develop a suite of tools based on ENISI. Multiple modeling technologies are integrated to visualize tissues, cells as well as proteins; furthermore, performance matching between the scales is addressed.ConclusionWe used ENISI MSM for developing predictive multiscale models of the mucosal immune system during gut inflammation. Our modeling predictions dissect the mechanisms by which effector CD4+ T cell responses contribute to tissue damage in the gut mucosa following immune dysregulation.


PLOS ONE | 2015

Systems Modeling of Interactions between Mucosal Immunity and the Gut Microbiome during Clostridium difficile Infection

Andrew Leber; Monica Viladomiu; Raquel Hontecillas; Vida Abedi; Casandra Philipson; Stefan Hoops; Brad Howard; Josep Bassaganya-Riera

Clostridium difficile infections are associated with the use of broad-spectrum antibiotics and result in an exuberant inflammatory response, leading to nosocomial diarrhea, colitis and even death. To better understand the dynamics of mucosal immunity during C. difficile infection from initiation through expansion to resolution, we built a computational model of the mucosal immune response to the bacterium. The model was calibrated using data from a mouse model of C. difficile infection. The model demonstrates a crucial role of T helper 17 (Th17) effector responses in the colonic lamina propria and luminal commensal bacteria populations in the clearance of C. difficile and colonic pathology, whereas regulatory T (Treg) cells responses are associated with the recovery phase. In addition, the production of anti-microbial peptides by inflamed epithelial cells and activated neutrophils in response to C. difficile infection inhibit the re-growth of beneficial commensal bacterial species. Computational simulations suggest that the removal of neutrophil and epithelial cell derived anti-microbial inhibitions, separately and together, on commensal bacterial regrowth promote recovery and minimize colonic inflammatory pathology. Simulation results predict a decrease in colonic inflammatory markers, such as neutrophilic influx and Th17 cells in the colonic lamina propria, and length of infection with accelerated commensal bacteria re-growth through altered anti-microbial inhibition. Computational modeling provides novel insights on the therapeutic value of repopulating the colonic microbiome and inducing regulatory mucosal immune responses during C. difficile infection. Thus, modeling mucosal immunity-gut microbiota interactions has the potential to guide the development of targeted fecal transplantation therapies in the context of precision medicine interventions.


PLOS ONE | 2015

Modeling the Regulatory Mechanisms by Which NLRX1 Modulates Innate Immune Responses to Helicobacter pylori Infection

Casandra Philipson; Josep Bassaganya-Riera; Monica Viladomiu; Barbara Kronsteiner; Vida Abedi; Stefan Hoops; Pawel Michalak; Lin Kang; Stephen E. Girardin; Raquel Hontecillas

Helicobacter pylori colonizes half of the world’s population as the dominant member of the gastric microbiota resulting in a lifelong chronic infection. Host responses toward the bacterium can result in asymptomatic, pathogenic or even favorable health outcomes; however, mechanisms underlying the dual role of H. pylori as a commensal versus pathogenic organism are not well characterized. Recent evidence suggests mononuclear phagocytes are largely involved in shaping dominant immunity during infection mediating the balance between host tolerance and succumbing to overt disease. We combined computational modeling, bioinformatics and experimental validation in order to investigate interactions between macrophages and intracellular H. pylori. Global transcriptomic analysis on bone marrow-derived macrophages (BMDM) in a gentamycin protection assay at six time points unveiled the presence of three sequential host response waves: an early transient regulatory gene module followed by sustained and late effector responses. Kinetic behaviors of pattern recognition receptors (PRRs) are linked to differential expression of spatiotemporal response waves and function to induce effector immunity through extracellular and intracellular detection of H. pylori. We report that bacterial interaction with the host intracellular environment caused significant suppression of regulatory NLRC3 and NLRX1 in a pattern inverse to early regulatory responses. To further delineate complex immune responses and pathway crosstalk between effector and regulatory PRRs, we built a computational model calibrated using time-series RNAseq data. Our validated computational hypotheses are that: 1) NLRX1 expression regulates bacterial burden in macrophages; and 2) early host response cytokines down-regulate NLRX1 expression through a negative feedback circuit. This paper applies modeling approaches to characterize the regulatory role of NLRX1 in mechanisms of host tolerance employed by macrophages to respond to and/or to co-exist with intracellular H. pylori.


Infection and Immunity | 2013

Helicobacter pylori Infection in a Pig Model Is Dominated by Th1 and Cytotoxic CD8 T Cell Responses

Barbara Kronsteiner; Josep Bassaganya-Riera; Casandra Philipson; Monica Viladomiu; Adria Carbo; Mireia Pedragosa; Salvador Vento; Raquel Hontecillas

ABSTRACT Helicobacter pylori infection is the leading cause for peptic ulcer disease and gastric adenocarcinoma. Mucosal T cell responses play an important role in mediating H. pylori-related gastric immunopathology. While induced regulatory T (iTreg) cells are required for chronic colonization without disease, T helper 1 (Th1) effector responses are associated with lower bacterial loads at the expense of gastric pathology. Pigs were inoculated with either H. pylori strain SS1 or J99. Phenotypic and functional changes in peripheral blood mononuclear cell (PBMC) populations were monitored weekly, and mucosal immune responses and bacterial loads were assessed up to 2 months postinfection. Both H. pylori strains elicited a Th1 response characterized by increased percentages of CD4+Tbet+ cells and elevated gamma interferon (IFN-γ) mRNA in PBMCs. A subset of CD8+ T cells expressing Tbet and CD16 increased following infection. Moreover, a significant increase in perforin and granzyme mRNA expression was observed in PBMCs of infected pigs, indicating a predominant cytotoxic immune response. Infiltration of B cells, myeloid cells, T cells expressing Treg- and Th17-associated transcription factors, and cytotoxic T cells was found in the gastric lamina propria of both infected groups. Interestingly, based on bacterial reisolation data, strain SS1 showed greater capacity to colonize and/or persist in the gastric mucosa than did strain J99. This novel pig model of infection closely mimics human gastric pathology and presents a suitable avenue for studying effector and regulatory responses toward H. pylori described in humans.


bioinformatics and biomedicine | 2014

ENISI MSM: A novel multi-scale modeling platform for computational immunology

Yongguo Mei; Adria Carbo; Raquel Hontecillas; Stefan Hoops; Nathan Liles; Pinyi Lu; Casandra Philipson; Josep Bassaganya-Riera

Biological systems span several orders of magnitude in space and time from intracellular pathways to tissue-level processes. Many studies focus on molecular level events while other studies focus on cellular level and tissue level interactions. The immune system is highly complex and dynamic, encompassing hierarchical interactions with dimensions ranging from nanometers to meters and time scales from nanoseconds to years. To comprehensively model immunological processes computationally, multi-scale models are needed. However, the lack of multi-scale modeling tools can be a deterrent to advance the understanding of the immune system across scales. In this paper, we developed an object-oriented multi-scale modeling (MSM) platform, ENISI MSM, that integrates agent-based modeling (ABM), ordinary-differential equations (ODE), and partial differential equations (PDE) models. To our best knowledge, this is the first such multi-scale modeling platform that is capable of integrating ODE, PDE, and ABM models together. The tool is developed in Java and is object-oriented. For example, the agents are objects and the ODE and PDE solvers are also objects. ENISI MSM also provides user-friendly interfaces and visualizations. We developed a multi-scale CD4+ T cell differentiation model in the context of gut inflammatory and showed the effectiveness of ENISI MSM.


International Journal of Toxicology | 2016

Exploratory Studies With BT-11: A Proposed Orally Active Therapeutic for Crohn's Disease

Philippe Bissel; Katie M. Boes; Jonathan Hinckley; Bernard S. Jortner; Geraldine Magnin-Bissel; Stephen R. Werre; Marion Ehrich; Adria Carbo; Casandra Philipson; Raquel Hontecillas; Noah Philipson; Richard D. Gandour; Josep Bassaganya-Riera

Lanthionine synthetase cyclase-like receptor 2 (LANCL2) is a novel therapeutic target for Crohn’s disease (CD). BT-11 is a small molecule that binds LANCL2, is orally active, and has demonstrated therapeutic efficacy in 3 validated mouse models of colitis at doses as low as 8 mg/kg/d. Exploratory experiments evaluated BT-11 in male Harlan Sprague Dawley rats with a single oral dose of 500 mg/kg and 80 mg/kg/d for 14 days (n = 10 rats dosed/group). Treated and control rats were observed for behavioral detriments, and blood and tissues were collected for clinical pathology and histopathological examination. A functional observational battery demonstrated no differences between treated and control groups over multiple times of observation for quantal, categorical, and continuous end points, including posture, in cage activity, approach, response to touch, weight, grip strength, body temperature, and time on a rotarod. Histopathological examination of the brain, kidney, liver, adrenal gland, testes, stomach, small and large intestines, duodenum, pancreas, heart, lungs, spleen, thymus, and rib found no significant differences between the groups. Plasma enzymes associated with liver function were transiently elevated 2 to 4 days after the 500 mg/kg single dose but returned to normal values by 8 days and were not observed at any time in rats given 80 mg/kg/d for 14 days. One hour after oral administration of a single dose of 80 mg/kg, BT-11 had a maximal concentration of 21 ng/mL; the half-life was 3 hours. These experimental results demonstrated that BT-11 is well tolerated in rats, and, with further testing, may hold promise as an orally active therapeutic for CD.

Collaboration


Dive into the Casandra Philipson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adria Carbo

Virginia Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Monica Viladomiu

Virginia Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Vida Abedi

Virginia Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Stefan Hoops

Virginia Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Pinyi Lu

Virginia Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Andrew Leber

Virginia Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Yongguo Mei

Virginia Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Barbara Kronsteiner

Virginia Bioinformatics Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge