Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Casey L. Burley is active.

Publication


Featured researches published by Casey L. Burley.


aiaa/ceas aeroacoustics conference | 2010

Hybrid Wing Body Aircraft System Noise Assessment with Propulsion Airframe Aeroacoustic Experiments

Russell H. Thomas; Casey L. Burley; Erik D. Olson

A system noise assessment of a hybrid wing body configuration was performed using NASAs best available aircraft models, engine model, and system noise assessment method. A propulsion airframe aeroacoustic effects experimental database for key noise sources and interaction effects was used to provide data directly in the noise assessment where prediction methods are inadequate. NASA engine and aircraft system models were created to define the hybrid wing body aircraft concept as a twin engine aircraft with a 7500 nautical mile mission. The engines were modeled as existing technology, in production, bypass ratio seven turbofans. The baseline hybrid wing body aircraft was assessed at 26.4 dB cumulative below the FAA Stage 4 certification level. To determine the potential for noise reduction with relatively near term technologies, seven other configurations were assessed beginning with moving the engines two fan nozzle diameters upstream of the trailing edge and then adding technologies for reduction of the highest noise sources. Aft radiated noise was expected to be the most challenging to reduce and, therefore, the experimental database focused on jet nozzle and pylon configurations that could reduce jet noise through a combination of source reduction and shielding effectiveness. The best configuration for reduction of jet noise used state-of-the-art technology chevrons with a pylon above the engine in the crown position. This configuration resulted in jet source noise reduction, favorable azimuthal directivity, and noise source relocation upstream where it is more effectively shielded by the limited airframe surface, and additional fan noise attenuation from acoustic liner on the crown pylon internal surfaces. Vertical and elevon surfaces were also assessed to add shielding effectiveness. The elevon deflection above the trailing edge showed some small additional noise reduction whereas vertical surfaces resulted in a slight noise increase. With the effects of the configurations from the database included, the best available noise reduction was 41.5 dB cumulative. Projected effects from additional technologies were assessed for an advanced noise reduction configuration including landing gear fairings and advanced pylon and chevron nozzles. Incorporating the three additional technology improvements, an aircraft noise is projected of 42.9 dB cumulative below the Stage 4 level.


aiaa ceas aeroacoustics conference | 2011

Design of the Next Generation Aircraft Noise Prediction Program: ANOPP2

Leonard V. Lopes; Casey L. Burley

The requirements, constraints, and design of NASAs next generation Aircraft NOise Prediction Program (ANOPP2) are introduced. Similar to its predecessor (ANOPP), ANOPP2 provides the U.S. Government with an independent aircraft system noise prediction capability that can be used as a stand-alone program or within larger trade studies that include performance, emissions, and fuel burn. The ANOPP2 framework is designed to facilitate the combination of acoustic approaches of varying fidelity for the analysis of noise from conventional and unconventional aircraft. ANOPP2 integrates noise prediction and propagation methods, including those found in ANOPP, into a unified system that is compatible for use within general aircraft analysis software. The design of the system is described in terms of its functionality and capability to perform predictions accounting for distributed sources, installation effects, and propagation through a non-uniform atmosphere including refraction and the influence of terrain. The philosophy of mixed fidelity noise prediction through the use of nested Ffowcs Williams and Hawkings surfaces is presented and specific issues associated with its implementation are identified. Demonstrations for a conventional twin-aisle and an unconventional hybrid wing body aircraft configuration are presented to show the feasibility and capabilities of the system. Isolated model-scale jet noise predictions are also presented using high-fidelity and reduced order models, further demonstrating ANOPP2s ability to provide predictions for model-scale test configurations.


aiaa ceas aeroacoustics conference | 2009

An Analytical Assessment of NASA's N+1 Subsonic Fixed Wing Project Noise Goal

Jeffrey J. Berton; Edmane Envia; Casey L. Burley

The Subsonic Fixed Wing Project of NASA’s Fundamental Aeronautics Program has adopted a noise reduction goal for new, subsonic, s ingle-aisle, civil aircraft expected to replace current 737 and A320 airplanes. These so-ca lled “N+1” aircraft ‐ designated in NASA vernacular as such since they will follow the current, in-service, “N” airplanes ‐ are hoped to achieve certification noise goal levels of 32 cumulative EPNdB under current Stage 4 noise regulations. A notional, N+1, single-aisle, twinjet transport with ultrahigh bypass ratio turbofan engines is analyzed in this study us ing NASA software and methods. Several advanced noise-reduction technologies are empirically applied to the propulsion system and airframe. Certification noise levels are predicted and compared with the NASA goal.


Journal of The American Helicopter Society | 1993

Acoustic predictions using measured pressures from a model rotor in the DNW

Joseph A. Visintainer; Casey L. Burley; Michael A. Marcolini; Sandy R. Liu

A contemporary design, 4-bladed United Technologies model rotor with pressure-instrumented blades was tested in the Duits-Nederslandse Windtunnel. Simultaneous acoustic and pressure measurements were made for a wide range of operating conditions. Microphones were optimally positioned at a number of locations in the flow forward of the rotor to measure rotor thickness noise, high-speed impulsive noise (both in the rotor plane), and blade-vortex interaction noise (forward and 25 deg below the rotor plane). The blade surface pressure data are used as aerodynamic input to WOPWOP, which is a state-of-the-art rotor noise prediction program that predicts rotor thickness and loading noise. The predicted results using WOPWOP are compared to the measured noise levels for cases where either thickness noise, blade-vortex interaction noise, or high-speed impulsive noise is the dominant noise mechanism. The comparisons show regions of good agreement, as well as areas where further improvement is necessary.


52nd Aerospace Sciences Meeting | 2014

System Noise Assessment and the Potential for a Low Noise Hybrid Wing Body Aircraft with Open Rotor Propulsion

Russell H. Thomas; Casey L. Burley; Leonard V. Lopes; Christopher J. Bahr; Frank H. Gern; Dale E. VanZante

An aircraft system noise assessment was conducted for a hybrid wing body freighter aircraft concept configured with three open rotor engines. The primary objective of the study was to determine the aircraft system level noise given the significant impact of installation effects including shielding the open rotor noise by the airframe. The aircraft was designed to carry a payload of 100,000 lbs on a 6,500 nautical mile mission. An experimental database was used to establish the propulsion airframe aeroacoustic installation effects including those from shielding by the airframe planform, interactions with the control surfaces, and additional noise reduction technologies. A second objective of the study applied the impacts of projected low noise airframe technology and a projection of advanced low noise rotors appropriate for the NASA N+2 2025 timeframe. With the projection of low noise rotors and installation effects, the aircraft system level was 26.0 EPNLdB below Stage 4 level with the engine installed at 1.0 rotor diameters upstream of the trailing edge. Moving the engine to 1.5 rotor diameters brought the system level noise to 30.8 EPNLdB below Stage 4. At these locations on the airframe, the integrated level of installation effects including shielding can be as much as 20 EPNLdB cumulative in addition to lower engine source noise from advanced low noise rotors. And finally, an additional set of technology effects were identified and the potential impact at the system level was estimated for noise only without assessing the impact on aircraft performance. If these additional effects were to be included it is estimated that the potential aircraft system noise could reach as low as 38.0 EPNLdB cumulative below Stage 4.


aiaa/ceas aeroacoustics conference | 2014

Shielding of Turbomachinery Broadband Noise from a Hybrid Wing Body Aircraft Configuration

Florence V. Hutcheson; Thomas F. Brooks; Casey L. Burley; Christopher J. Bahr; Daniel J. Stead; D. Stuart Pope

The results of an experimental study on the effects of engine placement and vertical tail configuration on shielding of exhaust broadband noise radiation are presented. This study is part of the high fidelity aeroacoustic test of a 5.8% scale Hybrid Wing Body (HWB) aircraft configuration performed in the 14- by 22-Foot Subsonic Tunnel at NASA Langley Research Center. Broadband Engine Noise Simulators (BENS) were used to determine insertion loss due to shielding by the HWB airframe of the broadband component of turbomachinery noise for different airframe configurations and flight conditions. Acoustics data were obtained from flyover and sideline microphones traversed to predefined streamwise stations. Noise measurements performed for different engine locations clearly show the noise benefit associated with positioning the engine nacelles further upstream on the HWB centerbody. Positioning the engine exhaust 2.5 nozzle diameters upstream (compared to 0.5 nozzle diameters downstream) of the HWB trailing edge was found of particular benefit in this study. Analysis of the shielding performance obtained with and without tunnel flow show that the effectiveness of the fuselage shielding of the exhaust noise, although still significant, is greatly reduced by the presence of the free stream flow compared to static conditions. This loss of shielding is due to the turbulence in the model near-wake/boundary layer flow. A comparison of shielding obtained with alternate vertical tail configurations shows limited differences in level; nevertheless, overall trends regarding the effect of cant angle and vertical location are revealed. Finally, it is shown that the vertical tails provide a clear shielding benefit towards the sideline while causing a slight increase in noise below the aircraft.


aiaa ceas aeroacoustics conference | 2009

Fan Noise Prediction with Applications to Aircraft System Noise Assessment

Douglas M. Nark; Edmane Envia; Casey L. Burley

This paper describes an assessment of current fan noise prediction tools by comparing measured and predicted sideline acoustic levels from a benchmark fan noise wind tunnel test. Specifically, an empirical method and newly developed coupled computational approach are utilized to predict aft fan noise for a benchmark test configuration. Comparisons with sideline noise measurements are performed to assess the relative merits of the two approaches. The study identifies issues entailed in coupling the source and propagation codes, as well as provides insight into the capabilities of the tools in predicting the fan noise source and subsequent propagation and radiation. In contrast to the empirical method, the new coupled computational approach provides the ability to investigate acoustic near-field effects. The potential benefits/costs of these new methods are also compared with the existing capabilities in a current aircraft noise system prediction tool. The knowledge gained in this work provides a basis for improved fan source specification in overall aircraft system noise studies.


aiaa ceas aeroacoustics conference | 2008

Initial Integration of Noise Prediction Tools for Acoustic Scattering Effects

Douglas M. Nark; Casey L. Burley; Ana F. Tinetti; John W. Rawls

This effort provides an initial glimpse at NASA capabilities available in predicting the scattering of fan noise from a non-conventional aircraft configuration. The Aircraft NOise Prediction Program, Fast Scattering Code, and the Rotorcraft Noise Model were coupled to provide increased fidelity models of scattering effects on engine fan noise sources. The integration of these codes led to the identification of several keys issues entailed in applying such multi-fidelity approaches. In particular, for prediction at noise certification points, the inclusion of distributed sources leads to complications with the source semi-sphere approach. Computational resource requirements limit the use of the higher fidelity scattering code to predict radiated sound pressure levels for full scale configurations at relevant frequencies. And, the ability to more accurately represent complex shielding surfaces in current lower fidelity models is necessary for general application to scattering predictions. This initial step in determining the potential benefits/costs of these new methods over the existing capabilities illustrates a number of the issues that must be addressed in the development of next generation aircraft system noise prediction tools.


International Journal of Aeroacoustics | 2006

Rotor Wake Vortex Definition-Evaluation of 3-C PIV Results of the HART-II Study:

Casey L. Burley; Thomas F. Brooks; Kristen Y. Rozier; Berend G. van der Wall; H. Richard; Markus Raffel; Philippe Beaumier; Yves Delrieux; Joon W. Lim; Yung H. Yu; Chee Tung; Kurt Pengel; Edzard Mercker

An evaluation is made of extensive three-component (3-C) particle image velocimetry (PIV) measurements within the wake across a rotor disk plane. The model is a 40 percent scale BO-105 helicopter main rotor in forward flight simulation. This study is part of the HART II test program conducted in the German-Dutch Wind Tunnel (DNW). Included are wake vortex field measurements over the advancing and retreating sides of the rotor operating at a typical descent landing condition important for impulsive blade-vortex interaction (BVI) noise. Also included are advancing side results for rotor angle variations from climb to steep descent. Using detailed PIV vector maps of the vortex fields, methods of extracting key vortex parameters are examined and a new method was developed and evaluated. An objective processing method, involving a center-of-vorticity criterion and a vorticity “disk” integration, was used to determine vortex core size, strength, core velocity distribution characteristics, and unsteadiness. These parameters are mapped over the rotor disk and offer unique physical insight for these parameters of importance for rotor noise and vibration prediction.


Journal of The American Helicopter Society | 1994

Sensitivity of acoustic predictions to variation of input parameters

Kenneth S. Brentner; Casey L. Burley; Michael A. Marcolini

Rotor noise prediction codes predict the thickness and loading noise produced by a helicopter rotor, given the blade motion, rotor operating conditions, and fluctuating force distribution over the blade surface. However, the criticality of these various inputs, and their respective effects on the predicted acoustic field, have never been fully addressed. This paper examines the importance of these inputs, and the sensitivity of the acoustic predicitions to a variation of each parameter. The effects of collective and cyclic pitch, as well as coning and cyclic flapping, are presented. Blade loading inputs are examined to determine the necessary spatial and temporal resolution, as well as the importance of the chordwise distribution. The acoustic predictions show regions in the acoustic field where significant errors occur when simplified blade motions or blade loadings are used. An assessment of the variation in the predicted acoustic field is balanced by a consideration of Central Processing Unit (CPU) time necessary for the various approximations.

Collaboration


Dive into the Casey L. Burley's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leonard V. Lopes

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Philippe Beaumier

Office National d'Études et de Recherches Aérospatiales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yves Delrieux

Office National d'Études et de Recherches Aérospatiales

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge