Caslav Brukner
University of Vienna
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Caslav Brukner.
Nature | 2001
Jian-Wei Pan; Christoph Simon; Caslav Brukner; Anton Zeilinger
The distribution of entangled states between distant locations will be essential for the future large-scale realization of quantum communication schemes such as quantum cryptography and quantum teleportation. Because of unavoidable noise in the quantum communication channel, the entanglement between two particles is more and more degraded the further they propagate. Entanglement purification is thus essential to distil highly entangled states from less entangled ones. Existing general purification protocols are based on the quantum controlled-NOT (CNOT) or similar quantum logic operations, which are very difficult to implement experimentally. Present realizations of CNOT gates are much too imperfect to be useful for long-distance quantum communication. Here we present a scheme for the entanglement purification of general mixed entangled states, which achieves 50 per cent of the success probability of schemes based on the CNOT operation, but requires only simple linear optical elements. Because the perfection of such elements is very high, the local operations necessary for purification can be performed with the required precision. Our procedure is within the reach of current technology, and should significantly simplify the implementation of long-distance quantum communication.
Nature Physics | 2012
Borivoje Dakic; Yannick Ole Lipp; Xiao-song Ma; Martin Ringbauer; Sebastian Kropatschek; Stefanie Barz; Tomasz Paterek; Vlatko Vedral; Anton Zeilinger; Caslav Brukner; Philip Walther
Quantum discord is the total non-classical correlation between two systems. This includes, but is not limited to, entanglement. Photonic experiments now demonstrate that separable states with non-zero quantum discord are a useful resource for quantum information processing and can even outperform entangled states.
Nature Physics | 2012
Igor Pikovski; Michael R. Vanner; Markus Aspelmeyer; M. S. Kim; Caslav Brukner
One of the main challenges in physics today is to merge quantum theory and the theory of general relativity into a unified framework. Researches are developing various approaches towards such a theory of quantum gravity, but a major hindrance is the lack of experimental evidence of quantum gravitational effects. Yet, the quantization of space-time itself can have experimental implications: the existence of a minimal length scale is widely expected to result in a modification of the Heisenberg uncertainty relation. Here we introduce a scheme to experimentally test this conjecture by probing directly the canonical commutation relation of the center-of-mass mode of a mechanical oscillator with a mass close to the Planck mass. Our protocol utilizes quantum optical control and readout of the mechanical system to probe possible deviations from the quantum commutation relation even at the Planck scale. We show that the scheme is within reach of current technology. It thus opens a feasible route for table-top experiments to explore possible quantum gravitational phenomena.
Physical Review Letters | 2002
Marek Zukowski; Caslav Brukner
We derive a single general Bell inequality which is a sufficient and necessary condition for the correlation function for N particles to be describable in a local and realistic picture, for the case in which measurements on each particle can be chosen between two arbitrary dichotomic observables. We also derive a necessary and sufficient condition for an arbitrary N-qubit mixed state to violate this inequality. This condition is a generalization and reformulation of the Horodecki family condition for two qubits.
arXiv: Quantum Physics | 2009
Borivoje Dakic; Caslav Brukner
Quantum theory makes the most accurate empirical predictions and yet it lacks simple, comprehensible physical principles from which the theory can be uniquely derived. A broad class of probabilistic theories exist which all share some features with quantum theory, such as probabilistic predictions for individual outcomes (indeterminism), the impossibility of information transfer faster than speed of light (no-signaling) or the impossibility of copying of unknown states (no-cloning). A vast majority of attempts to find physical principles behind quantum theory either fall short of deriving the theory uniquely from the principles or are based on abstract mathematical assumptions that require themselves a more conclusive physical motivation. Here, we show that classical probability theory and quantum theory can be reconstructed from three reasonable axioms: (1) (Information capacity) All systems with information carrying capacity of one bit are equivalent. (2) (Locality) The state of a composite system is completely determined by measurements on its subsystems. (3) (Reversibility) Between any two pure states there exists a reversible transformation. If one requires the transformation from the last axiom to be continuous, one separates quantum theory from the classical probabilistic one. A remarkable result following from our reconstruction is that no probability theory other than quantum theory can exhibit entanglement without contradicting one or more axioms.
Nature Physics | 2012
Xiao-song Ma; Stefan Zotter; Johannes Kofler; Rupert Ursin; Thomas Jennewein; Caslav Brukner; Anton Zeilinger
In 2000, Asher Peres put forward the paradoxical idea that entanglement could be produced after the entangled particles have been measured, even if they no longer exist. Researchers now experimentally demonstrate this idea using four photons.
Physical Review Letters | 1999
Caslav Brukner; Anton Zeilinger
A new measure of information in quantum mechanics is proposed which takes into account that for quantum systems the only features known before an experiment is performed are the probabilities for various events to occur. The sum of the individual measures of information for mutually complementary observations is invariant under the choice of the particular set of complementary observations and conserved if there is no information exchange with an environment. That operational quantum information invariant results in
Physical Review A | 2001
Caslav Brukner; Anton Zeilinger
k
Physical Review Letters | 2004
Caslav Brukner; Marek Zukowski; Jian-Wei Pan; Anton Zeilinger
bits of information for a system consisting of
arXiv: Quantum Physics | 2003
Caslav Brukner; Anton Zeilinger
k