Catalina Betancur
French Institute of Health and Medical Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Catalina Betancur.
Nature Genetics | 2003
Stéphane Jamain; Hélène Quach; Catalina Betancur; Maria Råstam; Catherine Colineaux; I. Carina Gillberg; Henrik Soderstrom; Bruno Giros; Marion Leboyer; Christopher Gillberg; Thomas Bourgeron; Agneta Nydén; Anne Philippe; Deborah Cohen; Nadia Chabane; Marie-Christine Mouren-Simeoni; Alexis Brice; Eili Sponheim; Ingrid Spurkland; Ola H. Skjeldal; Mary Coleman; Philip L Pearl; Ira L Cohen; John A. Tsiouris; Michele Zappella; Grazia Menchetti; Alfonso Pompella; H.N. Aschauer; Lionel Van Maldergem
Many studies have supported a genetic etiology for autism. Here we report mutations in two X-linked genes encoding neuroligins NLGN3 and NLGN4 in siblings with autism-spectrum disorders. These mutations affect cell-adhesion molecules localized at the synapse and suggest that a defect of synaptogenesis may predispose to autism.
Nature | 2012
Benjamin M. Neale; Yan Kou; Li Liu; Avi Ma'ayan; Kaitlin E. Samocha; Aniko Sabo; Chiao-Feng Lin; Christine Stevens; Li-San Wang; Vladimir Makarov; Pazi Penchas Polak; Seungtai Yoon; Jared Maguire; Emily L. Crawford; Nicholas G. Campbell; Evan T. Geller; Otto Valladares; Chad Shafer; Han Liu; Tuo Zhao; Guiqing Cai; Jayon Lihm; Ruth Dannenfelser; Omar Jabado; Zuleyma Peralta; Uma Nagaswamy; Donna M. Muzny; Jeffrey G. Reid; Irene Newsham; Yuanqing Wu
Autism spectrum disorders (ASD) are believed to have genetic and environmental origins, yet in only a modest fraction of individuals can specific causes be identified. To identify further genetic risk factors, here we assess the role of de novo mutations in ASD by sequencing the exomes of ASD cases and their parents (n = 175 trios). Fewer than half of the cases (46.3%) carry a missense or nonsense de novo variant, and the overall rate of mutation is only modestly higher than the expected rate. In contrast, the proteins encoded by genes that harboured de novo missense or nonsense mutations showed a higher degree of connectivity among themselves and to previous ASD genes as indexed by protein-protein interaction screens. The small increase in the rate of de novo events, when taken together with the protein interaction results, are consistent with an important but limited role for de novo point mutations in ASD, similar to that documented for de novo copy number variants. Genetic models incorporating these data indicate that most of the observed de novo events are unconnected to ASD; those that do confer risk are distributed across many genes and are incompletely penetrant (that is, not necessarily sufficient for disease). Our results support polygenic models in which spontaneous coding mutations in any of a large number of genes increases risk by 5- to 20-fold. Despite the challenge posed by such models, results from de novo events and a large parallel case–control study provide strong evidence in favour of CHD8 and KATNAL2 as genuine autism risk factors.
Nature Genetics | 2007
Christelle M. Durand; Catalina Betancur; Tobias M. Boeckers; Juergen Bockmann; Pauline Chaste; Fabien Fauchereau; Gudrun Nygren; Maria Råstam; I. Carina Gillberg; Henrik Anckarsäter; Eili Sponheim; Hany Goubran-Botros; Richard Delorme; Nadia Chabane; Marie-Christine Mouren-Simeoni; Philippe de Mas; Eric Bieth; Bernadette Rogé; Delphine Héron; Lydie Burglen; Christopher Gillberg; Marion Leboyer; Thomas Bourgeron
SHANK3 (also known as ProSAP2) regulates the structural organization of dendritic spines and is a binding partner of neuroligins; genes encoding neuroligins are mutated in autism and Asperger syndrome. Here, we report that a mutation of a single copy of SHANK3 on chromosome 22q13 can result in language and/or social communication disorders. These mutations concern only a small number of individuals, but they shed light on one gene dosage–sensitive synaptic pathway that is involved in autism spectrum disorders.
Molecular Psychiatry | 2002
Stéphane Jamain; Catalina Betancur; Hélène Quach; Anne Philippe; Marc Fellous; Bruno Giros; Christopher Gillberg; Marion Leboyer; Thomas Bourgeron
A genome scan was previously performed and pointed to chromosome 6q21 as a candidate region for autism. This region contains the glutamate receptor 6 (GluR6 or GRIK2) gene, a functional candidate for the syndrome. Glutamate is the principal excitatory neurotransmitter in the brain and is directly involved in cognitive functions such as memory and learning. We used two different approaches, the affected sib-pair (ASP) method and the transmission disequilibrium test (TDT), to investigate the linkage and association between GluR6 and autism. The ASP method, conducted with additional markers on the 51 original families and in eight new sibling pairs, showed a significant excess of allele sharing, generating an elevated multipoint maximum LOD score (ASPEX MLS = 3.28). TDT analysis, performed in the ASP families and in an independent data set of 107 parent-offspring trios, indicated a significant maternal transmission disequilibrium (TDTall P = 0.0004). Furthermore, TDT analysis (with only one affected proband per family) showed significant association between GluR6 and autism (TDT association P = 0.008). In contrast to maternal transmission, paternal transmission of GluR6 alleles was as expected in the absence of linkage, suggesting a maternal effect such as imprinting. Mutation screening was performed in 33 affected individuals, revealing several nucleotide polymorphisms (SNPs), including one amino acid change (M867I) in a highly conserved domain of the intracytoplasmic C-terminal region of the protein. This change is found in 8% of the autistic subjects and in 4% of the control population and seems to be more maternally transmitted than expected to autistic males (P = 0.007). Taken together, these data suggest that GluR6 is in linkage disequilibrium with autism.
Trends in Neurosciences | 2009
Catalina Betancur; Takeshi Sakurai; Joseph D. Buxbaum
Recent advances in genetics and genomics have unveiled numerous cases of autism spectrum disorders (ASDs) associated with rare, causal genetic variations. These findings support a novel view of ASDs in which many independent, individually rare genetic variants, each associated with a very high relative risk, together explain a large proportion of ASDs. Although these rare variants impact diverse pathways, there is accumulating evidence that synaptic pathways, including those involving synaptic cell adhesion, are disrupted in some subjects with ASD. These findings provide insights into the pathogenesis of ASDs and enable the development of model systems with construct validity for specific causes of ASDs. In several neurodevelopmental disorders frequently associated with ASD, including fragile X syndrome, Rett syndrome and tuberous sclerosis, animal models have led to the development of new therapeutic approaches, giving rise to optimism with other causes of ASDs.
PLOS Genetics | 2014
Claire S. Leblond; Caroline Nava; Anne Polge; Julie Gauthier; Guillaume Huguet; Serge Lumbroso; Fabienne Giuliano; Coline Stordeur; Christel Depienne; Kevin Mouzat; Dalila Pinto; Jennifer L. Howe; Nathalie Lemière; Christelle M. Durand; Jessica Guibert; Elodie Ey; Roberto Toro; Hugo Peyre; Alexandre Mathieu; Frédérique Amsellem; Maria Råstam; I. Carina Gillberg; Gudrun Rappold; Richard Holt; Anthony P. Monaco; Elena Maestrini; Pilar Galan; Delphine Héron; Aurélia Jacquette; Alexandra Afenjar
SHANK genes code for scaffold proteins located at the post-synaptic density of glutamatergic synapses. In neurons, SHANK2 and SHANK3 have a positive effect on the induction and maturation of dendritic spines, whereas SHANK1 induces the enlargement of spine heads. Mutations in SHANK genes have been associated with autism spectrum disorders (ASD), but their prevalence and clinical relevance remain to be determined. Here, we performed a new screen and a meta-analysis of SHANK copy-number and coding-sequence variants in ASD. Copy-number variants were analyzed in 5,657 patients and 19,163 controls, coding-sequence variants were ascertained in 760 to 2,147 patients and 492 to 1,090 controls (depending on the gene), and, individuals carrying de novo or truncating SHANK mutations underwent an extensive clinical investigation. Copy-number variants and truncating mutations in SHANK genes were present in ∼1% of patients with ASD: mutations in SHANK1 were rare (0.04%) and present in males with normal IQ and autism; mutations in SHANK2 were present in 0.17% of patients with ASD and mild intellectual disability; mutations in SHANK3 were present in 0.69% of patients with ASD and up to 2.12% of the cases with moderate to profound intellectual disability. In summary, mutations of the SHANK genes were detected in the whole spectrum of autism with a gradient of severity in cognitive impairment. Given the rare frequency of SHANK1 and SHANK2 deleterious mutations, the clinical relevance of these genes remains to be ascertained. In contrast, the frequency and the penetrance of SHANK3 mutations in individuals with ASD and intellectual disability—more than 1 in 50—warrant its consideration for mutation screening in clinical practice.
Behavioural Pharmacology | 2000
Cécile Spielewoy; Christine Roubert; Michel Hamon; Marika Nosten; Catalina Betancur; Bruno Giros
Mice lacking the dopamine transporter (DAT−/−) are characterized by high extracellular dopamine levels and spontaneous hyperlocomotion. We performed a detailed analysis of the behavioural phenotype of DAT−/− mice in order to identify other behavioural impairments associated with the hyperdopaminergic tone of these mutant mice. In particular, we investigated locomotor activity, exploration, and social and maternal behaviours, which are known to be regulated by dopamine. DAT−/− mice were easily aroused by novelty and always responded with hyperlocomotion, which interfered with habituation to the testing environment, exploratory behaviour in an open field and the coping response to forced swimming stress. Social behaviours such as interaction with an unknown congener or aggressiveness were not modified in DAT−/− mice compared with DAT+/− and DAT+/+ mice, although the maternal behaviour of mutant females was severely disturbed. Haloperidol and clozapine reversed the hyperactivity in DAT−/− mice, with a rightward shift of the dose–response curve compared with control animals, suggesting a dopamine‐mediated effect. These results emphasize the role of dopamine regulation in locomotion, exploration and maternal behaviours and suggest that mice with a genetic deletion of DAT may represent a useful model to elucidate the altered behavioural processes accompanying pathological conditions associated with hyperdopaminergic function.
BMC Psychiatry | 2006
Richard Delorme; Arnaud Bille; Catalina Betancur; Flavie Mathieu; Nadia Chabane; Marie Christine Mouren-Simeoni; Marion Leboyer
BackgroundRecent statistical approaches based on factor analysis of obsessive compulsive (OC) symptoms in adult patients have identified dimensions that seem more effective in symptom-based taxonomies and appear to be more stable over time. Although a phenotypic continuum from childhood to adulthood has been hypothesized, no factor analytic studies have been performed in juvenile patients, and the stability of OC dimensions in children and adolescents has not been assessed.MethodsThis study was designed to perform an exploratory factor analysis of OC symptoms in a sample of children and adolescents with OC disorder (OCD) and to investigate the course of factors over time (mean follow-up period: four years).ResultsWe report for the first time that four symptom dimensions, remarkably similar to those previously described in adults, underlined the heterogeneity of OC symptoms in children and adolescents. Moreover, after follow-up, the symptom dimensions identified remained essentially unmodified. The changes observed concerned the intensity of dimensions rather than shifts from one dimension to another.ConclusionThese findings reinforce the hypothesis of a phenotypic continuum of OC symptoms from childhood to adulthood. They also strengthen the interest for investigating the clinical, neurobiological and genetic heterogeneity of OCD using a dimension-based approach.
Biological Psychiatry | 2009
Christel Depienne; Daniel Moreno-De-Luca; Delphine Héron; Delphine Bouteiller; Aurélie Gennetier; Richard Delorme; Pauline Chaste; Jean-Pierre Siffroi; Sandra Chantot-Bastaraud; Baya Benyahia; Oriane Trouillard; Gudrun Nygren; Svenny Kopp; Maria Johansson; Maria Råstam; Lydie Burglen; Eric LeGuern; Alain Verloes; Marion Leboyer; Alexis Brice; Christopher Gillberg; Catalina Betancur
BACKGROUND Maternally derived duplications of the 15q11-q13 region are the most frequently reported chromosomal aberrations in autism spectrum disorders (ASD). Prader-Willi and Angelman syndromes, caused by 15q11-q13 deletions or abnormal methylation of imprinted genes, are also associated with ASD. However, the prevalence of these disorders in ASD is unknown. The aim of this study was to assess the frequency of 15q11-q13 rearrangements in a large sample of patients ascertained for ASD. METHODS A total of 522 patients belonging to 430 families were screened for deletions, duplications, and methylation abnormalities involving 15q11-q13 with multiplex ligation-dependent probe amplification (MLPA). RESULTS We identified four patients with 15q11-q13 abnormalities: a supernumerary chromosome 15, a paternal interstitial duplication, and two subjects with Angelman syndrome, one with a maternal deletion and the other with a paternal uniparental disomy. CONCLUSIONS Our results show that abnormalities of the 15q11-q13 region are a significant cause of ASD, accounting for approximately 1% of cases. Maternal interstitial 15q11-q13 duplications, previously reported to be present in 1% of patients with ASD, were not detected in our sample. Although paternal duplications of chromosome 15 remain phenotypically silent in the majority of patients, they can give rise to developmental delay and ASD in some subjects, suggesting that paternally expressed genes in this region can contribute to ASD, albeit with reduced penetrance compared with maternal duplications. These findings indicate that patients with ASD should be routinely screened for 15q genomic imbalances and methylation abnormalities and that MLPA is a reliable, rapid, and cost-effective method to perform this screening.
Molecular Autism | 2013
Latha Soorya; Alexander Kolevzon; Jessica Zweifach; Teresa Lim; Yuriy Dobry; Lily Schwartz; Yitzchak Frank; A. Ting Wang; Guiqing Cai; Elena Parkhomenko; Danielle Halpern; David Grodberg; Benjamin Angarita; Judith P. Willner; Amy Yang; Roberto Canitano; William F. Chaplin; Catalina Betancur; Joseph D. Buxbaum
Background22q13 deletion syndrome, also known as Phelan-McDermid syndrome, is a neurodevelopmental disorder characterized by intellectual disability, hypotonia, delayed or absent speech, and autistic features. SHANK3 has been identified as the critical gene in the neurological and behavioral aspects of this syndrome. The phenotype of SHANK3 deficiency has been described primarily from case studies, with limited evaluation of behavioral and cognitive deficits. The present study used a prospective design and inter-disciplinary clinical evaluations to assess patients with SHANK3 deficiency, with the goal of providing a comprehensive picture of the medical and behavioral profile of the syndrome.MethodsA serially ascertained sample of patients with SHANK3 deficiency (n = 32) was evaluated by a team of child psychiatrists, neurologists, clinical geneticists, molecular geneticists and psychologists. Patients were evaluated for autism spectrum disorder using the Autism Diagnostic Interview-Revised and the Autism Diagnostic Observation Schedule-G.ResultsThirty participants with 22q13.3 deletions ranging in size from 101 kb to 8.45 Mb and two participants with de novo SHANK3 mutations were included. The sample was characterized by high rates of autism spectrum disorder: 27 (84%) met criteria for autism spectrum disorder and 24 (75%) for autistic disorder. Most patients (77%) exhibited severe to profound intellectual disability and only five (19%) used some words spontaneously to communicate. Dysmorphic features, hypotonia, gait disturbance, recurring upper respiratory tract infections, gastroesophageal reflux and seizures were also common. Analysis of genotype-phenotype correlations indicated that larger deletions were associated with increased levels of dysmorphic features, medical comorbidities and social communication impairments related to autism. Analyses of individuals with small deletions or point mutations identified features related to SHANK3 haploinsufficiency, including ASD, seizures and abnormal EEG, hypotonia, sleep disturbances, abnormal brain MRI, gastroesophageal reflux, and certain dysmorphic features.ConclusionsThis study supports findings from previous research on the severity of intellectual, motor, and speech impairments seen in SHANK3 deficiency, and highlights the prominence of autism spectrum disorder in the syndrome. Limitations of existing evaluation tools are discussed, along with the need for natural history studies to inform clinical monitoring and treatment development in SHANK3 deficiency.