Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Catalina Lodillinsky is active.

Publication


Featured researches published by Catalina Lodillinsky.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Control of MT1-MMP transport by atypical PKC during breast-cancer progression.

Carine Rossé; Catalina Lodillinsky; Laetitia Fuhrmann; Maya Nourieh; Pedro Monteiro; Marie Irondelle; Emilie Lagoutte; Sophie Vacher; François Waharte; Perrine Paul-Gilloteaux; Maryse Romao; Lucie Sengmanivong; Mark Linch; Johan Van Lint; Graça Raposo; Anne Vincent-Salomon; Ivan Bièche; Peter J. Parker; Philippe Chavrier

Significance We characterize a mechanism through which the polarity protein atypical PKCι controls invasion and matrix remodeling by tumor cells by regulating endosome-to-plasma membrane traffic of the membrane type 1-matrix metalloproteinase (MT1-MMP) in breast-cancer cells. Further analysis shows that atypical PKCι and MT1-MMP are co–up-regulated in hormone receptor-negative breast tumors in association with higher risk of metastasis. These findings provide previously unidentified avenues for the design of therapeutic interventions. Dissemination of carcinoma cells requires the pericellular degradation of the extracellular matrix, which is mediated by membrane type 1-matrix metalloproteinase (MT1-MMP). In this article, we report a co–up-regulation and colocalization of MT1-MMP and atypical protein kinase C iota (aPKCι) in hormone receptor-negative breast tumors in association with a higher risk of metastasis. Silencing of aPKC in invasive breast-tumor cell lines impaired the delivery of MT1-MMP from late endocytic storage compartments to the surface and inhibited matrix degradation and invasion. We provide evidence that aPKCι, in association with MT1-MMP–containing endosomes, phosphorylates cortactin, which is present in F-actin–rich puncta on MT1-MMP–positive endosomes and regulates cortactin association with the membrane scission protein dynamin-2. Thus, cell line-based observations and clinical data reveal the concerted activity of aPKC, cortactin, and dynamin-2, which control the trafficking of MT1-MMP from late endosome to the plasma membrane and play an important role in the invasive potential of breast-cancer cells.


Oncogene | 2016

p63/MT1-MMP axis is required for in situ to invasive transition in basal-like breast cancer

Catalina Lodillinsky; Elvira Infante; A Guichard; R Chaligné; Laetitia Fuhrmann; J Cyrta; M Irondelle; E Lagoutte; Sophie Vacher; H Bonsang-Kitzis; M Glukhova; Fabien Reyal; Ivan Bièche; Anne Vincent-Salomon; Philippe Chavrier

The transition of ductal carcinoma in situ (DCIS) to invasive breast carcinoma requires tumor cells to cross the basement membrane (BM). However, mechanisms underlying BM transmigration are poorly understood. Here, we report that expression of membrane-type 1 (MT1)-matrix metalloproteinase (MMP), a key component of the BM invasion program, increases during breast cancer progression at the in situ to invasive breast carcinoma transition. In the intraductal xenograft model, MT1-MMP is required for BM transmigration of MCF10DCIS.com breast adenocarcinoma cells and is overexpressed in cell clusters overlying focal BM disruptions and at the invasive tumor front. Mirrored upregulation of p63 and MT1-MMP is observed at the edge of MCF10DCIS.com xenograft tumors and p63 is required for induction of MT1-MMP-dependent invasive program in response to microenvironmental signals. Immunohistochemistry and analysis of public database reveal that p63 and MT1-MMP are upregulated in human basal-like breast tumors suggesting that p63/MT1-MMP axis contributes to progression of basal-like breast cancers with elevated p63 and MT1-MMP levels.


The Journal of Urology | 2009

Novel invasive orthotopic bladder cancer model with high cathepsin B activity resembling human bladder cancer.

Catalina Lodillinsky; Vanina Rodriguez; Liliana Vauthay; Eduardo Sandes; Alberto Casabé; Ana María Eiján

PURPOSE We developed and characterized an orthotopic invasive bladder tumor model. MATERIAL AND METHODS The MB49-I invasive bladder tumor cell line was obtained after 13 consecutive in vivo passages of primary tumor obtained by subcutaneous inoculation of MB49 bladder tumor cells in C57Bl/6J male mice. RESULTS MB49-I tumor local invasiveness, tumor weight and spontaneous metastatic capacity were higher than in MB49 tumors. In MB49-I bladder tumors increased vimentin was observed, suggesting epithelial mesenchymal transition. In vitro the MB49-I cell line showed higher invasive properties associated with an increase in cathepsin B, metalloproteinase 9 and urokinase-type plasminogen activator proteolytic activities. Orthotopic bladder tumors induced by electrocautery of the bladder wall and subsequent instillation of MB49 and MB49-I bladder cancer cells generated superficial and invasive bladder tumors, respectively. CONCLUSIONS The new murine bladder model described resembles human bladder disease, making it a useful tool for studying the molecular mechanisms of tumor progression and metastasis, and assaying antimetastatic and anti-invasive agents.


Embo Molecular Medicine | 2013

An essential role for decorin in bladder cancer invasiveness

Mohamed El Behi; Sophie Krumeich; Catalina Lodillinsky; Aurélie Kamoun; Lorenzo Tibaldi; Gaël Sugano; Aurélien De Reynies; Elodie Chapeaublanc; Agnès Laplanche; Thierry Lebret; Yves Allory; François Radvanyi; Olivier Lantz; Ana María Eiján; Isabelle Bernard-Pierrot; Clotilde Théry

Muscle‐invasive forms of urothelial carcinomas are responsible for most mortality in bladder cancer. Finding new treatments for invasive bladder tumours requires adequate animal models to decipher the mechanisms of progression, in particular the way tumours interact with their microenvironment. Herein, using the murine bladder tumour cell line MB49 and its more aggressive variant MB49‐I, we demonstrate that the adaptive immune system efficiently limits progression of MB49, whereas MB49‐I has lost tumour antigens and is insensitive to adaptive immune responses. Furthermore, we unravel a parallel mechanism developed by MB49‐I to subvert its environment: de novo secretion of the proteoglycan decorin. We show that decorin overexpression in the MB49/MB49‐I model is required for efficient progression, by promoting angiogenesis and tumour cell invasiveness. Finally, we show that these results are relevant to muscle‐invasive human bladder carcinomas, which overexpress decorin together with angiogenesis‐ and adhesion/migration‐related genes, and that decorin overexpression in the human bladder carcinoma cell line TCCSUP is required for efficient invasiveness in vitro. We thus propose decorin as a new therapeutic target for these aggressive tumours.


PLOS ONE | 2010

Bacillus Calmette Guerin Induces Fibroblast Activation Both Directly and through Macrophages in a Mouse Bladder Cancer Model

Catalina Lodillinsky; Yanina Langle; Ariel Guionet; Adrián Góngora; Alberto Baldi; Eduardo Sandes; Alberto Casabé; Ana María Eiján

Background Bacillus Calmette-Guerin (BCG) is the most effective treatment for non-muscle invasive bladder cancer. However, a failure in the initial response or relapse within the first five years of treatment has been observed in 20% of patients. We have previously observed that in vivo administration of an inhibitor of nitric oxide improved the response to BCG of bladder tumor bearing mice. It was described that this effect was due to a replacement of tumor tissue by collagen depots. The aim of the present work was to clarify the mechanism involved in this process. Methodology/Principal Findings We demonstrated that BCG induces NIH-3T3 fibroblast proliferation by activating the MAPK and PI3K signaling pathways and also differentiation determined by alpha-smooth muscle actin (alpha-SMA) expression. In vivo, intratumoral inoculation of BCG also increased alpha-SMA and collagen expression. Oral administration of L-NAME enhanced the pro-fibrotic effect of BCG. Peritoneal macrophages obtained from MB49 tumor-bearing mice treated in vivo with combined treatment of BCG with L-NAME also enhanced fibroblast proliferation. We observed that FGF-2 is one of the factors released by BCG-activated macrophages that is able to induce fibroblast proliferation. The involvement of FGF-2 was evidenced using an anti-FGF2 antibody. At the same time, this macrophage population improved wound healing rate in normal mice and FGF-2 expression was also increased in these wounds. Conclusions/Significance Our findings suggest that fibroblasts are targeted by BCG both directly and through activated macrophages in an immunotherapy context of a bladder murine model. We also described, for the first time, that FGF-2 is involved in a dialog between fibroblasts and macrophages induced after BCG treatment. The fact that L-NAME administration improves the BCG effect on fibroblasts, NO inhibition, might represent a new approach to add to the conventional BCG therapy.


The Journal of Urology | 2012

Role of Peroxisome Proliferator Activated Receptor-Gamma in Bacillus Calmette-Guérin Bladder Cancer Therapy

Yanina Langle; Catalina Lodillinsky; Denise Belgorosky; Eduardo Sandes; Ana María Eiján

PURPOSE We evaluated the effects of combined PPARg agonist with bacillus Calmette-Guérin in bladder cancer growth in vitro and in vivo, focusing on the tissue remodeling mechanisms induced by bacillus Calmette-Guérin. MATERIALS AND METHODS PPARs are a superfamily of nuclear receptors that are transcription factors activated by ligands. Activation of PPARg, the γ subtype, causes proliferation inhibition or differentiation of tumor cells. Previously, we reported that the inhibition of murine bladder tumor growth induced by bacillus Calmette-Guérin, which is the standard treatment for patients with nonmuscle invasive, high grade bladder cancer, increased PPARg expression in vitro and in vivo. In vitro the cell growth inhibition induced by bacillus Calmette-Guérin was enhanced by the PPARg agonist 15-d-PGJ2, raising the possibility that PPARg activation may be a therapeutic modality for this disease. RESULTS In MB49 cells bacillus Calmette-Guérin and 15-d-PGJ2 induced PPARg expression, nuclear translocation and transcriptional activity. In vivo bacillus Calmette-Guérin reduced tumor size, an effect that was partially reversed when bacillus Calmette-Guérin was combined with the PPARg agonist rosiglitazone. The same result was found when we analyzed the effect of the PPARg antagonist BADGE (Fluka Chemical, Buchs, Switzerland) combined with bacillus Calmette-Guérin. Analysis of the activation of macrophages and fibroblasts demonstrated that rosiglitazone inhibited the tissue remodeling mechanisms induced by bacillus Calmette-Guérin. CONCLUSIONS Results suggest that PPARg is involved in the antitumor action of bacillus Calmette-Guérin. However, exogenous PPARg agonists would not be a favorable therapeutic modality because they can inhibit the tissue remodeling needed for an overall satisfactory bacillus Calmette-Guérin response.


The Journal of Urology | 2012

Inducible Nitric Oxide Synthase and PPARγ are Involved in Bladder Cancer Progression

Eduardo Sandes; Catalina Lodillinsky; Yanina Langle; Denise Belgorosky; Lina Marino; Liliana Giménez; Alberto Casabé; Ana María Eiján

PURPOSE We evaluated the role of inducible nitric oxide synthase and PPARγ as prognostic factors for bladder cancer. MATERIALS AND METHODS Inducible nitric oxide synthase and PPARγ were evaluated by Western blot and immunohistochemistry in a mouse bladder cancer model of nonmuscle invasive and invasive MB49-I tumor cells, and in human bladder cancer samples. RESULTS Inducible nitric oxide synthase expression was negative in mouse normal urothelium and higher in invasive than in noninvasive MB49 tumors. In vitro inducible nitric oxide synthase activity, determined as nitrite, was higher in MB49-I than in MB49 cells (p <0.001). In human samples expression was also associated with tumor invasion. Nuclear PPARγ expression was negative in normal mouse urothelium but higher in nonmuscle invasive MB49 than in MB49-I tumors. Similarly in human tumors low PPARγ was associated with poor prognosis factors, such as high histological grade (p = 0.0160) and invasion status (p = 0.0352). A positive correlation was noted between inducible nitric oxide synthase and PPARγ in low histological grade and nonmuscle invasive tumors (Pearson correlation index 0.6368, p = 0.0351, 0.4438 and 0.0168, respectively). As determined by gene reporter assay, PPARγ activity was induced by nitric oxide only in nonmuscle invasive MB49 cells (p <0.001). CONCLUSIONS Results suggest that increased PPARγ controls inducible nitric oxide synthase expression at early tumor stages. However, regulation is lost at advanced tumor stages, when the increase in inducible nitric oxide synthase and the decrease in PPARγ seem to be associated with bladder cancer progression.


Archive | 2012

Animal Models for Basic and Preclinical Research in Bladder Cancer

Ana María Eiján; Catalina Lodillinsky; Eduardo Sandes

Bladder cancer is one of the most common cancers in the world. In 2006, there were about 61,240 diagnosed cases of bladder cancer and approximately 13,060 deaths attributable to this disease, being the prevalence estimated worldwide more than 1,000,000 patients (Jemal et al., 2006; Lerner, 2005). Taking into account that its incidence seems to be increasing, bladder cancer is clearly a significant public health issue around the world. Thus, it is necessary to intensify research on this topic. Urinary bladder cancer originates mainly from epithelial cells of the urothelium (LopezBeltran et al., 2004; Montironi et al., 2005). When initially diagnosed, most bladder cancers (about 70%) do not present muscle invasion, and are thus known as non-muscle invasive bladder cancer (pTa and pT1). In these cases, a simple transurethral resection is sufficient to remove the tumor. However, some patients experience recurrence or even tumor progression. The progression of the tumor involves invasion of tumor cells, which penetrate deeper layers of the bladder such as the detrusor muscle (pT2), perivesical tissue (pT3) and extravesical organs (pT4) (Figure 1). Since this progression threatens the patients life, more aggressive therapies are necessary (Sobin et al., 1997). Intensive research in bladder cancer, as well as that in most tumors, is being carried out to elucidate the reason for the appearance of tumors, and to find out which factors are involved in their development and which are related to the tumor progression process. These investigations, which provide insights into the biology of the tumor, are essential for the implementation of new therapeutic and/or preventive modalities (Bhattacharya et al., 2010; Zhang et al., 2011). Research on basic science is focused on the mechanisms that lead cells towards transformation and development of cancer, using simple experimental models where it is easier to interpret the results. Cell culture techniques are widely used to study different oncological processes. The cell culture is the growth of any cell type, usually tumor cells, in with nutrient-containing solutions. The cells grow attached to the plastic surface, forming a monolayer, usually in a two-dimensional way. This technique allows studying processes such as mutagenesis, invasion, migration, and production of proteolytic enzymes. Although cell culture is a very important tool, it has certain limitations. Many biological processes depend on the three-dimensional architecture. In addition, monolayer culture is usually


Oncogene | 2018

Coronin 1C promotes triple-negative breast cancer invasiveness through regulation of MT1-MMP traffic and invadopodia function

Alessia Castagnino; Antonio Castro-Castro; Marie Irondelle; Alan Guichard; Catalina Lodillinsky; Laetitia Fuhrmann; Sophie Vacher; Sonia Agüera-González; Anna Zagryazhskaya-Masson; Maryse Romao; Carole El Kesrouani; Angelika A. Noegel; Thierry Dubois; Graça Raposo; James E. Bear; Christoph S. Clemen; Anne Vincent-Salomon; Ivan Bièche; Philippe Chavrier

Membrane type 1-matrix metalloproteinase (MT1-MMP), a membrane-tethered protease, is key for matrix breakdown during cancer invasion and metastasis. Assembly of branched actin networks by the Arp2/3 complex is required for MT1-MMP traffic and formation of matrix-degradative invadopodia. Contrasting with the well-established role of actin filament branching factor cortactin in invadopodia function during cancer cell invasion, the contribution of coronin-family debranching factors to invadopodia-based matrix remodeling is not known. Here, we investigated the contribution of coronin 1C to the invasive potential of breast cancer cells. We report that expression of coronin 1C is elevated in invasive human breast cancers, correlates positively with MT1-MMP expression in relation with increased metastatic risk and is a new independent prognostic factor in breast cancer. We provide evidence that, akin to cortactin, coronin 1C is required for invadopodia formation and matrix degradation by breast cancer cells lines and for 3D collagen invasion by multicellular spheroids. Using intravital imaging of orthotopic human breast tumor xenografts, we find that coronin 1C accumulates in structures forming in association with collagen fibrils in the tumor microenvironment. Moreover, we establish the role of coronin 1C in the regulation of positioning and trafficking of MT1-MMP-positive endolysosomes. These results identify coronin 1C as a novel player of the multi-faceted mechanism responsible for invadopodia formation, MT1-MMP surface exposure and invasiveness in breast cancer cells.


IntraVital | 2016

Social networking in tumor cell communities is associated with increased aggressiveness

Catalina Lodillinsky; Katrina Podsypanina; Philippe Chavrier

ABSTRACT Extracellular vesicles (EVs) are lipid-bilayer-enclosed vesicles that contain proteins, lipids and nucleic acids. EVs produced by cells from healthy tissues circulate in the blood and body fluids, and can be taken up by unrelated cells. As they have the capacity to transfer cargo proteins, lipids and nucleic acids (mostly mRNAs and miRNAs) between different cells in the body, EVs are emerging as mediators of intercellular communication that could modulate cell behavior, tissue homeostasis and regulation of physiological functions. EV-mediated cell-cell communications are also proposed to play a role in disease, for example, cancer, where they could contribute to transfer of traits required for tumor progression and metastasis. However, direct evidence for EV-mediated mRNA transfer to individual cells and for its biological consequences in vivo has been missing until recently. Recent studies have reported elegant experiments using genetic tracing with the Cre recombinase system and intravital imaging that visualize and quantify functional transfer of mRNA mediated by EVs in the context of cancer and metastasis.

Collaboration


Dive into the Catalina Lodillinsky's collaboration.

Top Co-Authors

Avatar

Ana María Eiján

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Eduardo Sandes

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alberto Casabé

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philippe Chavrier

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Denise Belgorosky

University of Buenos Aires

View shared research outputs
Researchain Logo
Decentralizing Knowledge