Catarina A. Custódio
University of Minho
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Catarina A. Custódio.
Soft Matter | 2011
Ana I. Neto; Catarina A. Custódio; Wenlong Song; João F. Mano
We propose a new low cost platform for high-throughput analysis that permits screening the biological performance of independent combinations of biomaterials, cells and culture media. Patterned superhydrophobic flat substrates with controlled wettable spots are used to produce microarray chips for accelerated multiplexing evaluation.
Small | 2011
Rui R. Costa; Catarina A. Custódio; Francisco Javier Arias; José Carlos Rodríguez-Cabello; João F. Mano
In this work, biomimetic smart thin coatings using chitosan and a recombinant elastin-like recombinamer (ELR) containing the cell attachment sequence arginine-glycine-(aspartic acid) (RGD) are fabricated through a layer-by-layer approach. The synthetic polymer is characterized for its molecular mass and composition using mass spectroscopy and peptide sequencing. The adsorption of each polymeric layer is followed in situ at room temperature and pH 5.5 using a quartz-crystal microbalance with dissipation monitoring, showing that both polymers can be successfully combined to conceive nanostructured, multilayered coatings. The smart properties of the coatings are tested for their wettability by contact angle (CA) measurements as a function of external stimuli, namely temperature, pH, and ionic strength. Wettability transitions are observed from a moderate hydrophobic surface (CAs approximately from 62° to 71°) to an extremely wettable one (CA considered as 0°) as the temperature, pH, and ionic strength are raised above 50 °C, 11, and 1.25 M, respectively. Atomic force microscopy is performed at pH 7.4 and pH 11 to assess the coating topography. In the latter, the results reveal the formation of large and compact structures upon the aggregation of ELRs at the surface, which increase water affinity. Cell adhesion tests are conducted using a SaOs-2 cell line. Enhanced cell adhesion is observed in the coatings, as compared to a coating with a chitosan-ending film and a scrambled arginine-(aspartic acid)-glycine (RDG) biopolymer. The results suggest that such films could be used in the future as smart biomimetic coatings of biomaterials for different biomedical applications, including those in tissue engineering or in controlled delivery systems.
Journal of Tissue Engineering and Regenerative Medicine | 2010
Catarina A. Custódio; Catarina M. Alves; Rui L. Reis; João F. Mano
Covalent grafting of biomolecules is a strategy to improve the biocompatibility and bioactivity of materials. However, it is critical to maintain the biological activity of the biomolecule upon its attachment to the surface. In the present study we compared the biological properties of chitosan, in which the surface was enriched with fibronectin (Fn), using two methodologies: chemical immobilization, using a water‐soluble carbodiimide; and simple adsorption. X‐ray photoelectron spectroscopy studies confirmed the successful immobilization of Fn onto modified membranes. SaOs‐2 cells were seeded onto these surfaces to assess the biological consequences of such modifications. The presence of Fn stimulated cell adhesion on chitosan. It was found that after 7 days of culture in the presence of covalently attached Fn, the cells are confluent; significantly fewer cells were detected in unmodified film and in film with adsorbed Fn. This result is consistent with the fact that considerable desorption of Fn from chitosan takes place within 24 h in culture medium. This study showed that Fn may be easily covalently attached onto chitosan substrates, improving the biological performance of the material. The technique could find applications in tissue‐engineering strategies, as the surface modification of chitosan‐based substrates could be carried out in more complex geometries, such as in scaffolds or particles. Copyright
Small | 2010
Praveen Sher; Catarina A. Custódio; João F. Mano
The order, positioning and packing of template into random or well controlled structures coupled with infi ltration of metals, polymers, and/or polyelectrolytes within a construct present vast spectrum of potential applications in the fi eld of separations, sensing, biomedicine, tissue engineering and energy harvesting. Different formation/fabrication techniques mostly focus on combination of bottom up approach, self assembly of particles, layer-by-layer (LbL) assembly, transfer printing and so on to produce wide range of two/ three dimentional materials consituting size range from nano to micro levels. Robust 3D template with multiple step strategy are the chrateristic features during these approaches. [ 1 , 3 ]
Small | 2013
Ana Lima; Catarina A. Custódio; Carmen Alvarez-Lorenzo; João F. Mano
The authors acknowledge the financial support from Fundacao para a Ciencia e Tecnologia (FCT) through the PhD grants SFRH/BD/71395/2010 and SFRH/BD/61390/2009, Fundo Social Europeu (FSE) and Programa Operacional Potencial Humano (POPH) Portugal, and MICINN (SAF2011-22771 and PRI-AIBPT-2011-1211) Spain.
Advanced Healthcare Materials | 2014
Joana Silva; Ana Rita C. Duarte; Catarina A. Custódio; Praveen Sher; Ana I. Neto; António C. M. Pinho; Jaime C. Fonseca; Rui L. Reis; João F. Mano
The design and production of structures with nanometer-sized polymer films based on layer-by-layer (LbL) are of particular interest for tissue engineering since they allow the precise control of physical and biochemical cues of implantable devices. In this work, a method is developed for the preparation of nanostructured hollow multilayers tubes combining LbL and template leaching. The aim is to produce hollow tubes based on polyelectrolyte multilayer films with tuned physical-chemical properties and study their effects on cell behavior. The final tubular structures are characterized by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), microscopy, swelling, and mechanical tests, including dynamic mechanical analysis (DMA) in physiological simulated conditions. It is found that more robust films could be produced upon chemical cross-linking with genipin. In particular, the mechanical properties confirms the viscoelastic properties and a storage and young modulus about two times higher. The water uptake decreases from about 390% to 110% after the cross-linking. The biological performance is assessed in terms of cell adhesion, viability, and proliferation. The results obtained with the cross-linked tubes demonstrate that these are more suitable structures for cell adhesion and spreading. The results suggest the potential of these structures to boost the development of innovative tubular structures for tissue engineering approaches.
Nanomedicine: Nanotechnology, Biology and Medicine | 2013
Rui R. Costa; Catarina A. Custódio; Francisco Javier Arias; José Carlos Rodríguez-Cabello; João F. Mano
UNLABELLED Multilayer capsules conceived at the nano- and microscales are receiving increasing interest due to their potential role as carriers of biomolecules for drug delivery and tissue engineering. Herein we report the construction of microcapsules by the sequential adsorption of chitosan and a biomimetic elastin-like recombinamer into nanostructured layers on inorganic microparticle templates. The release profile of bovine serum albumin, which was studied at 25 and 37 °C, shows higher retention and Fickian diffusion at physiological temperature. The self-assembled multilayers act as a barrier and allowed for sustained release over 14 days. The capsules studied are non-cytotoxic towards L929 cells, thereby suggesting multiple applications in the fields of biotechnology and bioengineering, where high control of the delivery of therapeutics and growth/differentiation factors is required. FROM THE CLINICAL EDITOR In this paper, the construction of microcapsules by sequential adsorption of chitosan and a biomimetic, elastin-like recombinamer into nanostructured layers on inorganic microparticle templates is reported. The layers demonstrated sustained drug release over 14 days. These microcapsules are non-cytotoxic toward L929 cells, suggesting multiple applications where high control of drug or growth factor delivery is required.
Langmuir | 2014
Catarina A. Custódio; V. San Miguel-Arranz; Radu A. Gropeanu; M. Gropeanu; M. Wirkner; Rui L. Reis; João F. Mano; A. del Campo
We present a phototriggerable system that allows for the spatiotemporal controlled attachment of selected cell types to a biomaterial using immobilized antibodies that specifically target individual cell phenotypes. o-Nitrobenzyl caged biotin was used to functionalize chitosan membranes and mediate site-specific coupling of streptavidin and biotinylated antibodies after light activation. The ability of this system to capture and immobilize specific cells on a surface was tested using endothelial-specific biotinylated antibodies and nonspecific ones as controls. Homogeneous patterned monolayers of human umbilical vein endothelial cells were obtained on CD31-functionalized surfaces. This is a simple and generic approach that is applicable to other ligands, materials, and cell types and shows the flexibility of caged ligands to trigger and control the interaction between cells and biomaterials.
Biointerphases | 2012
Catarina A. Custódio; Ana M. Frias; A. del Campo; Rui L. Reis; João F. Mano
Bioactive constructs to guide cellular mobilization and function have been proposed as an approach for a new generation of biomaterials in functional tissue engineering. Adult mesenchymal stem cells have been widely used as a source for cell based therapeutic strategies, namely tissue engineering. This is a heterogeneous cell population containing many subpopulations with distinct regenerative capacity. Thus, one of the issues for the effective clinical use of stem cells in tissue engineering is the isolation of a highly purified, expandable specific subpopulation of stem cells. Antibody functionalized biomaterials could be promising candidates to isolate and recruit specific cell types. Here we propose a new concept of instructive biomaterials that are able to recruit and purify specific cell types from a mixed cell population. This biomimetic concept uses a target-specific chitosan substrate to capture specific adipose derived stem cells. Specific antibodies were covalently immobilized onto chitosan membranes using bis[sulfosuccinimidyl] suberate (BS3). Quartz crystal microbalance (QCM) was used to monitor antibody immobilization/adsorption onto the chitosan films. Specific antibodies covalently immobilized, kept their bioactivity and captured specific cell types from a mixed cell population. Microcontact printing allowed to covalently immobilize antibodies in patterns and simultaneously a spatial control in cell attachment.
Biomacromolecules | 2016
Catarina A. Custódio; Rui L. Reis; João F. Mano
Laminarin is a low-molecular-weight (<10 kDa) glucan found in brown algae made up of β(1→3)-glucan with β(1→6)-branches. This is one of the most abundant carbon sources in the marine ecosystem. Laminarin has been found to possess various biological interesting properties, such as antioxidant and antimicrobial activities. An attractive feature of laminarin is its inherently low viscosity and high solubility in organic and aqueous solvents that facilitate processing. This makes laminarin an appealing material for the development of new hydrogels that can be easily injected through minimally invasive procedures or used for microfabrication of hydrogels. An approach for synthesizing photo-cross-linkable laminarin hydrogels is presented in this work for the first time. Photo-cross-linkable laminarin was prepared by chemical modification with acrylate groups. The synthesized photo-cross-linkable laminarin material provides the basis for the development of a new injectable system for biomedical purposes that could be used alone or with encapsulated cells or biological molecules. The cross-linking of the methacrylated laminarin is straightforward via photoinitiated polymerization. The possibility to control the methacrylation degree of laminarin and to prepare solutions up to at least 15% w/v permits us to obtain hydrogels with tuned and wide range of stiffness and swelling. Furthermore, the encapsulation of human-adipose-derived stem cells encapsulated in the photo-cross-linked hydrogels demonstrated in vitro biocompatibility.