Catarina Moreira Pinho
Stockholm University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Catarina Moreira Pinho.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Louise Hedskog; Catarina Moreira Pinho; Riccardo Filadi; Annica Rönnbäck; Laura Hertwig; Birgitta Wiehager; Pia Larssen; Sandra Gellhaar; Anna Sandebring; Marie Westerlund; Caroline Graff; Bengt Winblad; Dagmar Galter; Homira Behbahani; Paola Pizzo; Elzbieta Glaser; Maria Ankarcrona
It is well-established that subcompartments of endoplasmic reticulum (ER) are in physical contact with the mitochondria. These lipid raft-like regions of ER are referred to as mitochondria-associated ER membranes (MAMs), and they play an important role in, for example, lipid synthesis, calcium homeostasis, and apoptotic signaling. Perturbation of MAM function has previously been suggested in Alzheimer’s disease (AD) as shown in fibroblasts from AD patients and a neuroblastoma cell line containing familial presenilin-2 AD mutation. The effect of AD pathogenesis on the ER–mitochondria interplay in the brain has so far remained unknown. Here, we studied ER–mitochondria contacts in human AD brain and related AD mouse and neuronal cell models. We found uniform distribution of MAM in neurons. Phosphofurin acidic cluster sorting protein-2 and σ1 receptor, two MAM-associated proteins, were shown to be essential for neuronal survival, because siRNA knockdown resulted in degeneration. Up-regulated MAM-associated proteins were found in the AD brain and amyloid precursor protein (APP)Swe/Lon mouse model, in which up-regulation was observed before the appearance of plaques. By studying an ER–mitochondria bridging complex, inositol-1,4,5-triphosphate receptor–voltage-dependent anion channel, we revealed that nanomolar concentrations of amyloid β-peptide increased inositol-1,4,5-triphosphate receptor and voltage-dependent anion channel protein expression and elevated the number of ER–mitochondria contact points and mitochondrial calcium concentrations. Our data suggest an important role of ER–mitochondria contacts and cross-talk in AD pathology.
Cell Metabolism | 2014
Dirk Mossmann; F.-Nora Vögtle; Asli Aras Taskin; Pedro Filipe Teixeira; Julia Ring; Julia M. Burkhart; Nils Burger; Catarina Moreira Pinho; Jelena Tadic; Desiree Loreth; Caroline Graff; Friedrich Metzger; Albert Sickmann; Oliver Kretz; Nils Wiedemann; René P. Zahedi; Frank Madeo; Elzbieta Glaser; Chris Meisinger
Most mitochondrial proteins possess N-terminal presequences that are required for targeting and import into the organelle. Upon import, presequences are cleaved off by matrix processing peptidases and subsequently degraded by the peptidasome Cym1/PreP, which also degrades Amyloid-beta peptides (Aβ). Here we find that impaired turnover of presequence peptides results in feedback inhibition of presequence processing enzymes. Moreover, Aβ inhibits degradation of presequence peptides by PreP, resulting in accumulation of mitochondrial preproteins and processing intermediates. Dysfunctional preprotein maturation leads to rapid protein degradation and an imbalanced organellar proteome. Our findings reveal a general mechanism by which Aβ peptide can induce the multiple diverse mitochondrial dysfunctions accompanying Alzheimers disease.
Journal of Alzheimer's Disease | 2011
Nyosha Alikhani; Lan Guo; Shiqiang Yan; Heng Du; Catarina Moreira Pinho; John Xi Chen; Elzbieta Glaser; Shirley ShiDu Yan
Accumulation of amyloid-β peptide (Aβ), the neurotoxic peptide implicated in the pathogenesis of Alzheimers disease (AD), has been shown in brain mitochondria of AD patients and of AD transgenic mouse models. The presence of Aβ in mitochondria leads to free radical generation and neuronal stress. Recently, we identified the presequence protease, PreP, localized in the mitochondrial matrix in mammalian mitochondria as the novel mitochondrial Aβ-degrading enzyme. In the present study, we examined PreP activity in the mitochondrial matrix of the human brains temporal lobe, an area of the brain highly susceptible to Aβ accumulation and reactive oxygen species (ROS) production. We found significantly lower hPreP activity in AD brains compared with non-AD age-matched controls. By contrast, in the cerebellum, a brain region typically spared from Aβ accumulation, there was no significant difference in hPreP activity when comparing AD samples to non-AD controls. We also found significantly reduced PreP activity in the mitochondrial matrix of AD transgenic mouse brains (Tg mAβPP and Tg mAβPP/ABAD) when compared to non-transgenic aged-matched mice. Furthermore, mitochondrial fractions isolated from AD brains and Tg mAβPP mice had higher levels of 4-hydroxynonenal, an oxidative product, as compared with those from non-AD and nonTg mice. Accordingly, activity of cytochrome c oxidase was significantly reduced in the AD mitochondria. These findings suggest that decreased PreP proteolytic activity, possibly due to enhanced ROS production, contributes to Aβ accumulation in mitochondria leading to the mitochondrial toxicity and neuronal death that is exacerbated in AD. Clearance of mitochondrial Aβ by PreP may thus be of importance in the pathology of AD.
Journal of Cellular and Molecular Medicine | 2016
Nuno Santos Leal; Bernadette Schreiner; Catarina Moreira Pinho; Riccardo Filadi; Birgitta Wiehager; Helena Karlström; Paola Pizzo; Maria Ankarcrona
Mitochondria are physically and biochemically in contact with other organelles including the endoplasmic reticulum (ER). Such contacts are formed between mitochondria‐associated ER membranes (MAM), specialized subregions of ER, and the outer mitochondrial membrane (OMM). We have previously shown increased expression of MAM‐associated proteins and enhanced ER to mitochondria Ca2+ transfer from ER to mitochondria in Alzheimers disease (AD) and amyloid β‐peptide (Aβ)‐related neuronal models. Here, we report that siRNA knockdown of mitofusin‐2 (Mfn2), a protein that is involved in the tethering of ER and mitochondria, leads to increased contact between the two organelles. Cells depleted in Mfn2 showed increased Ca2+ transfer from ER to mitchondria and longer stretches of ER forming contacts with OMM. Interestingly, increased contact resulted in decreased concentrations of intra‐ and extracellular Aβ40 and Aβ42. Analysis of γ‐secretase protein expression, maturation and activity revealed that the low Aβ concentrations were a result of impaired γ‐secretase complex function. Amyloid‐β precursor protein (APP), β‐site APP‐cleaving enzyme 1 and neprilysin expression as well as neprilysin activity were not affected by Mfn2 siRNA treatment. In summary, our data shows that modulation of ER–mitochondria contact affects γ‐secretase activity and Aβ generation. Increased ER–mitochondria contact results in lower γ‐secretase activity suggesting a new mechanism by which Aβ generation can be controlled.
Free Radical Biology and Medicine | 2012
Pedro Filipe Teixeira; Catarina Moreira Pinho; Rui M. Branca; Janne Lehtiö; Rodney L. Levine; Elzbieta Glaser
The mitochondrial peptidasome called presequence protease (PreP) is responsible for the degradation of presequences and other unstructured peptides including the amyloid-β peptide, whose accumulation may have deleterious effects on mitochondrial function. Recent studies showed that PreP activity is reduced in Alzheimer disease (AD) patients and AD mouse models compared to controls, which correlated with an enhanced reactive oxygen species production in mitochondria. In this study, we have investigated the effects of a biologically relevant oxidant, hydrogen peroxide (H(2)O(2)), on the activity of recombinant human PreP (hPreP). H(2)O(2) inhibited hPreP activity in a concentration-dependent manner, resulting in oxidation of amino acid residues (detected by carbonylation) and lowered protein stability. Substitution of the evolutionarily conserved methionine 206 for leucine resulted in increased sensitivity of hPreP to oxidation, indicating a possible protective role of M206 as internal antioxidant. The activity of hPreP oxidized at low concentrations of H(2)O(2) could be restored by methionine sulfoxide reductase A (MsrA), an enzyme that localizes to the mitochondrial matrix, suggesting that hPreP constitutes a substrate for MsrA. In summary, our in vitro results suggest a possible redox control of hPreP in the mitochondrial matrix and support the protective role of the conserved methionine 206 residue as an internal antioxidant.
Neuroscience Letters | 2010
Catarina Moreira Pinho; Behnosh F. Björk; Nyosha Alikhani; Hans G. Bäckman; Therese Eneqvist; Laura Fratiglioni; Elzbieta Glaser; Caroline Graff
Several studies suggest mitochondrial dysfunction as a possible mechanism underlying the development of Alzheimer disease (AD). There is data showing that amyloid-beta (A beta) peptide is present in AD brain mitochondria. The human presequence protease (hPreP) was recently shown to be the major mitochondrial A beta-degrading enzyme. We investigated if there is an increased susceptibility to AD, which can be attributed to genetic variation in the hPreP gene PITRM1 and if the proteolytic efficiency of recombinant hPreP variants is affected. When a total of 673 AD cases and 649 controls were genotyped for 18 single nucleotide polymorphisms (SNPs), no genetic association between any of the SNPs and the risk for AD was found. In contrast, functional analysis of four non-synonymous SNPs in hPreP revealed a decreased activity compared to wild type hPreP. Using A beta, the presequence of ATP synthase F(1)beta subunit and a fluorescent peptide as substrates, the lowest activity was observed for the hPreP(A525D) variant, corresponding to rs1224893, which displayed only 20-30% of wild type activity. Furthermore, the activity of all variants was restored by the addition of Mg(2+), suggesting an important role for this metal during proteolysis. In conclusion, our data suggest that genetic variation in the hPreP gene PITRM1 may potentially contribute to mitochondrial dysfunctions.
Journal of Alzheimer's Disease | 2012
Louise Hedskog; Jesper Brohede; Birgitta Wiehager; Catarina Moreira Pinho; Priya Revathikumar; Elzbieta Glaser; Caroline Graff; Helena Karlström; Maria Ankarcrona
The apolipoprotein E (APOE) gene remains the most strongly established risk factor for late onset Alzheimers disease (LOAD). Recently the gene, TOMM40, which is in linkage disequilibrium with APOE, was identified to be associated with LOAD in genome-wide association studies. One of the identified polymorphisms in TOMM40 is rs10524523, which is located in intron 6 and composed of thymidine repeats varying between 14 to 36 base-pairs in length. Reported results are contradictory in regard to the very long poly-T variant that has been associated with both increased and decreased risk of LOAD. Our study aimed to elucidate the functional implication of rs10524523 in an in vitro model of human fibroblast cells obtained from cognitively healthy APOE ε3/ε4 carriers harboring very long or short poly-T variants coupled to their APOE ε3 allele. We have studied (i) expression levels of TOM40 protein and mRNA, (ii) TOM40 mRNA splicing, and (iii) mitochondrial function and morphology; and we have found no significant differences in regards to very long or short poly-T variant.
Cell Death & Differentiation | 2018
Niamh M. C. Connolly; Pierre Theurey; Vera Adam-Vizi; Nicolas G. Bazan; Paolo Bernardi; Juan P. Bolaños; Carsten Culmsee; Valina L. Dawson; Mohanish Deshmukh; Michael R. Duchen; Heiko Düssmann; Gary Fiskum; Maria F. Galindo; Giles E. Hardingham; J. Marie Hardwick; Mika B. Jekabsons; Elizabeth A. Jonas; Joaquín Jordán; Stuart A. Lipton; Giovanni Manfredi; Mark P. Mattson; BethAnn McLaughlin; Axel Methner; Anne N. Murphy; Michael P. Murphy; David G. Nicholls; Brian M. Polster; Tullio Pozzan; Rosario Rizzuto; Jorgina Satrústegui
Neurodegenerative diseases are a spectrum of chronic, debilitating disorders characterised by the progressive degeneration and death of neurons. Mitochondrial dysfunction has been implicated in most neurodegenerative diseases, but in many instances it is unclear whether such dysfunction is a cause or an effect of the underlying pathology, and whether it represents a viable therapeutic target. It is therefore imperative to utilise and optimise cellular models and experimental techniques appropriate to determine the contribution of mitochondrial dysfunction to neurodegenerative disease phenotypes. In this consensus article, we collate details on and discuss pitfalls of existing experimental approaches to assess mitochondrial function in in vitro cellular models of neurodegenerative diseases, including specific protocols for the measurement of oxygen consumption rate in primary neuron cultures, and single-neuron, time-lapse fluorescence imaging of the mitochondrial membrane potential and mitochondrial NAD(P)H. As part of the Cellular Bioenergetics of Neurodegenerative Diseases (CeBioND) consortium (www.cebiond.org), we are performing cross-disease analyses to identify common and distinct molecular mechanisms involved in mitochondrial bioenergetic dysfunction in cellular models of Alzheimer’s, Parkinson’s, and Huntington’s diseases. Here we provide detailed guidelines and protocols as standardised across the five collaborating laboratories of the CeBioND consortium, with additional contributions from other experts in the field.
Current Biology | 2018
Riccardo Filadi; Nuno Santos Leal; Bernadette Schreiner; Alice Rossi; Giacomo Dentoni; Catarina Moreira Pinho; Birgitta Wiehager; Domenico Cieri; Tito Calì; Paola Pizzo; Maria Ankarcrona
The mitochondrial translocase of the outer membrane (TOM) is a protein complex that is essential for the post-translational import of nuclear-encoded mitochondrial proteins. Among its subunits, TOM70 and TOM20 are only transiently associated with the core complex, suggesting their possible additional roles within the outer mitochondrial membrane (OMM). Here, by using different mammalian cell lines, we demonstrate that TOM70, but not TOM20, clusters in distinct OMM foci, frequently overlapping with sites in which the endoplasmic reticulum (ER) contacts mitochondria. Functionally, TOM70 depletion specifically impairs inositol trisphosphates (IP3)-linked ER to mitochondria Ca2+ transfer. This phenomenon is dependent on the capacity of TOM70 to interact with IP3-receptors and favor their functional recruitment close to mitochondria. Importantly, the reduced constitutive Ca2+ transfer to mitochondria, observed in TOM70-depleted cells, dampens mitochondrial respiration, affects cell bioenergetics, induces autophagy, and inhibits proliferation. Our data reveal a hitherto unexpected role for TOM70 in pro-survival ER-mitochondria communication, reinforcing the view that the ER-mitochondria signaling platform is a key regulator of cell fate.
Journal of Molecular Biology | 2017
Pedro Filipe Teixeira; Geoffrey Masuyer; Catarina Moreira Pinho; Rui M. Branca; Beata Kmiec; Cecilia Wallin; Sebastian K.T.S. Wärmländer; Ronnie P.-A. Berntsson; Maria Ankarcrona; Astrid Gräslund; Janne Lehtiö; Pål Stenmark; Elzbieta Glaser
Proteolysis plays an important role in mitochondrial biogenesis, from the processing of newly imported precursor proteins to the degradation of mitochondrial targeting peptides. Disruption of peptide degradation activity in yeast, plant and mammalian mitochondria is known to have deleterious consequences for organism physiology, highlighting the important role of mitochondrial peptidases. In the present work, we show that the human mitochondrial peptidase neurolysin (hNLN) can degrade mitochondrial presequence peptides as well as other fragments up to 19 amino acids long. The crystal structure of hNLNE475Q in complex with the products of neurotensin cleavage at 2.7Å revealed a closed conformation with an internal cavity that restricts substrate length and highlighted the mechanism of enzyme opening/closing that is necessary for substrate binding and catalytic activity. Analysis of peptide degradation in vitro showed that hNLN cooperates with presequence protease (PreP or PITRM1) in the degradation of long targeting peptides and amyloid-β peptide, Aβ1-40, associated with Alzheimer disease, particularly cleaving the hydrophobic fragment Aβ35-40. These findings suggest that a network of proteases may be required for complete degradation of peptides localized in mitochondria.