Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Catarina Xavier is active.

Publication


Featured researches published by Catarina Xavier.


The FASEB Journal | 2011

Preclinical screening of anti-HER2 nanobodies for molecular imaging of breast cancer

Ilse Vaneycken; Nick Devoogdt; Naomi Van Gassen; Cécile Vincke; Catarina Xavier; Ulrich Wernery; Serge Muyldermans; Tony Lahoutte; Vicky Caveliers

Accurate determination of tumor human epidermal growth factor receptor 2 (HER2)‐status in breast cancer patients is possible via noninvasive imaging, provided adequate tracers are used. In this study, we describe the generation of a panel of 38 nanobodies, small HER2‐binding fragments that are derived from heavy‐chain‐only antibodies raised in an immunized dromedary. In search of a lead compound, a subset of nanobodies was biochemically characterized in depth and preclinically tested for use as tracers for imaging of xenografted tumors. The selected compound, 2Rs15d, was found to be stable and to interact specifically with HER2 recombinant protein and HER2‐expressing cells in ELISA, surface plasmon resonance, flow cytometry, and radioligand binding studies with low nanomolar affinities, and did not compete with anti‐HER2 therapeutic antibodies trastuzumab and pertuzumab. Single‐photon‐emission computed tomography (SPECT) imaging quantification and biodistribution analyses showed that 99mTc‐labeled 2Rs15d has a high tumor uptake in 2 HER2+ tumor models, fast blood clearance, low accumulation in nontarget organs except kidneys, and high concomitant tumor‐to‐blood and tumor‐to‐muscle ratios at 1 h after intravenous injection. These values were dramatically lower for an irrelevant control 99mTc‐nanobody and for 99mTc‐2Rs15d targeting a HER2– tumor.—Vaneycken, I., Devoogdt, N., Van Gassen, N., Vincke, C., Xavier, C., Wernery, U., Muyldermans, S., Lahoutte, T., Caveliers, V. Preclinical screening of anti‐HER2 nanobodies for molecular imaging of breast cancer. FASEB J. 25, 2433–2446 (2011). www.fasebj.org


Current Opinion in Biotechnology | 2011

Immuno-imaging using nanobodies

Ilse Vaneycken; Matthias D’Huyvetter; Sophie Hernot; Jens De Vos; Catarina Xavier; Nick Devoogdt; Vicky Caveliers; Tony Lahoutte

Immuno-imaging is a developing technology that aims at studying disease in patients using imaging techniques such as positron emission tomography in combination with radiolabeled immunoglobulin derived targeting probes. Nanobodies are the smallest antigen-binding antibody-fragments and show fast and specific targeting in vivo. These probes are currently under investigation as therapeutics but preclinical studies indicate that nanobodies could also become the next generation of magic bullets for immuno-imaging. Initial data show that imaging can be performed as early as 1 hour post-injection enabling the use of short-lived radio-isotopes. These unique properties should enable patient friendly and safe imaging protocols. This review focuses on the current status of radiolabeled nanobodies as targeting probes for immuno-imaging.


The Journal of Nuclear Medicine | 2013

Synthesis, Preclinical Validation, Dosimetry, and Toxicity of 68Ga-NOTA-Anti-HER2 Nanobodies for iPET Imaging of HER2 Receptor Expression in Cancer

Catarina Xavier; Ilse Vaneycken; Matthias D’Huyvetter; Johannes Heemskerk; Marleen Keyaerts; Cécile Vincke; Nick Devoogdt; Serge Muyldermans; Tony Lahoutte; Vicky Caveliers

Nanobodies are the smallest fully functional antigen-binding antibody fragments possessing ideal properties as probes for molecular imaging. In this study we labeled the anti–human epidermal growth factor receptor type 2 (HER2) Nanobody with 68Ga via a 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) derivative and assessed its use for HER2 iPET imaging. Methods: The 2Rs15dHis6 Nanobody and the lead optimized current-good-manufacturing-practice grade analog 2Rs15d were conjugated with S-2-(4-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid (p-SCN-Bn-NOTA) to enable fast and efficient 68Ga labeling. Biodistribution and PET/CT studies were performed on HER2-positive and -negative tumor xenografts. The effect of injected mass on biodistribution was evaluated. The biodistribution data were extrapolated to calculate radiation dose estimates for the adult female using OLINDA software. A single-dose extended-toxicity study for NOTA-2Rs15d was performed on healthy mice up to a dose of 10 mg/kg. Results: Radiolabeling was quantitative (>97%) after 5 min of incubation at room temperature; specific activity was 55–200 MBq/nmol. Biodistribution studies showed fast and specific uptake (percentage injected activity [%IA]) in HER2-positive tumors (3.13 ± 0.06 and 4.34 ± 0.90 %IA/g for 68Ga-NOTA-2Rs15dHis6 and 68Ga-NOTA-2Rs15d, respectively, at 1 h after injection) and high tumor-to-blood and tumor-to-muscle ratios at 1 h after injection, resulting in high-contrast PET/CT images with high specific tumor uptake. A remarkable finding of the biodistribution studies was that kidney uptake was reduced by 60% for the Nanobody lacking the C-terminal His6 tag. The injected mass showed an effect on the general biodistribution: a 100-fold increase in NOTA-2Rs15d mass decreased liver uptake from 7.43 ± 1.89 to 2.90 ± 0.26 %IA/g whereas tumor uptake increased from 2.49 ± 0.68 to 4.23 ± 0.99 %IA/g. The calculated effective dose, based on extrapolation of mouse data, was 0.0218 mSv/MBq, which would yield a radiation dose of 4 mSv to a patient after injection of 185 MBq of 68Ga-NOTA-2Rs15d. In the toxicity study, no adverse effects were observed after injection of a 10 mg/kg dose of NOTA-2Rs15d. Conclusion: A new anti-HER2 PET tracer, 68Ga-NOTA-2Rs15d, was synthesized via a rapid procedure under mild conditions. Preclinical validation showed high-specific-contrast imaging of HER2-positive tumors with no observed toxicity. 68Ga-NOTA-2Rs15d is ready for first-in-human clinical trials.


The Journal of Nuclear Medicine | 2016

Phase I Study of 68Ga-HER2-Nanobody for PET/CT Assessment of HER2 Expression in Breast Carcinoma

Marleen Keyaerts; Catarina Xavier; Johannes Heemskerk; Nick Devoogdt; Hendrik Everaert; Chloé Ackaert; Marian Vanhoeij; François Duhoux; T. Gevaert; Philippe Simon; Denis Schallier; Christel Fontaine; Ilse Vaneycken; Christian Vanhove; Jacques De Grève; Jan Lamote; Vicky Caveliers; Tony Lahoutte

Human epidermal growth factor receptor 2 (HER2) status is one of the major tumor characteristics in breast cancer to guide therapy. Anti-HER2 treatment has clear survival advantages in HER2-positive breast carcinoma patients. Heterogeneity in HER2 expression between primary tumor and metastasis has repeatedly been described, resulting in the need to reassess HER2 status during the disease course. To avoid repeated biopsy with potential bias due to tumor heterogeneity, Nanobodies directed against HER2 have been developed as probes for molecular imaging. Nanobodies, which are derived from unique heavy-chain-only antibodies, are the smallest antigen-binding antibody fragments and have ideal characteristics for PET imaging. The primary aims were assessment of safety, biodistribution, and dosimetry. The secondary aim was to investigate tumor-targeting potential. Methods: In total, 20 women with primary or metastatic breast carcinoma (score of 2+ or 3+ on HER2 immunohistochemical assessment) were included. Anti-HER2-Nanobody was labeled with 68Ga via a NOTA derivative. Administered activities were 53–174 MBq (average, 107 MBq). PET/CT scans for dosimetry assessment were obtained at 10, 60, and 90 min after administration. Physical evaluation and blood analysis were performed for safety evaluation. Biodistribution was analyzed for 11 organs using MIM software; dosimetry was assessed using OLINDA/EXM. Tumor-targeting potential was assessed in primary and metastatic lesions. Results: No adverse reactions occurred. A fast blood clearance was observed, with only 10% of injected activity remaining in the blood at 1 h after injection. Uptake was seen mainly in the kidneys, liver, and intestines. The effective dose was 0.043 mSv/MBq, resulting in an average of 4.6 mSv per patient. The critical organ was the urinary bladder wall, with a dose of 0.406 mGy/MBq. In patients with metastatic disease, tracer accumulation well above the background level was demonstrated in most identified sites of disease. Primary lesions were more variable in tracer accumulation. Conclusion: 68Ga-HER2-Nanobody PET/CT is a safe procedure with a radiation dose comparable to other routinely used PET tracers. Its biodistribution is favorable, with the highest uptake in the kidneys, liver, and intestines but very low background levels in all other organs that typically house primary breast carcinoma or tumor metastasis. Tracer accumulation in HER2-positive metastases is high, compared with normal surrounding tissues, and warrants further assessment in a phase II trial.


Contrast Media & Molecular Imaging | 2011

Localization, mechanism and reduction of renal retention of technetium-99m labeled epidermal growth factor receptor-specific nanobody in mice

Lea Olive Tchouate Gainkam; Vicky Caveliers; Nick Devoogdt; Christian Vanhove; Catarina Xavier; Otto C. Boerman; Serge Muyldermans; Axel Bossuyt; Tony Lahoutte

BACKGROUND Nanobodies are single-domain antigen binding fragments derived from functional heavy-chain antibodies elicited in Camelidae. They are powerful probes for radioimmunoimaging, but their renal uptake is relatively high. In this study we have evaluated the role of megalin on the renal uptake of anti-EGFR (99m)Tc-7C12 nanobody and the potency of gelofusine and/or lysine to reduce renal uptake of (99m)Tc-7C12. METHODS First we compared the renal uptake of (99m)Tc-7C12 in megalin-deficient and megalin-wild-type mice using pinhole SPECT/microCT and ex vivo analysis. The effect of gelofusine and lysine administration on renal accumulation of (99m)Tc-7C12 was analyzed in CD-1 mice divided into lysine preload at 30 min before tracer injection (LysPreload), LysPreload + gelofusine coadministration (LysPreload + GeloCoad), lysine coadministration (LysCoad), gelofusine coadministration (GeloCoad) and LysCoad + GeloCoad. The combined effect of gelofusine and lysine on tumor uptake was tested in mice xenografts. RESULTS Renal uptake of (99m)Tc-7C12 was 44.22 ± 3.46% lower in megalin-deficient compared with megalin-wild-type mice. In CD-1 mice, lysine preload had no effect on the renal retention whereas coinjection of lysine or gelofusine with the tracer resulted in 25.12 ± 2.99 and 36.22 ± 3.07% reduction, respectively. The combined effect of gelofusine and lysine was the most effective, namely a reduction of renal retention of 45.24 ± 2.09%. Gelofusine and lysine coadministration improved tumor uptake. CONCLUSION Megalin contributes to the renal accumulation of (99m)Tc-7C12. Gelofusine and lysine coinjection with the tracer reduces the renal uptake while tumor uptake is improved. Although this methodology allows for optimization of imaging protocol using nanobodies, further improvements are needed before using these molecules for radionuclide therapy.


Theranostics | 2014

Targeted radionuclide therapy with A 177Lu-labeled anti-HER2 nanobody.

Matthias D'Huyvetter; Cécile Vincke; Catarina Xavier; An Aerts; Nathalie Impens; Sarah Baatout; Hendrik De Raeve; Serge Muyldermans; Vicky Caveliers; Nick Devoogdt; Tony Lahoutte

RIT has become an attractive strategy in cancer treatment, but still faces important drawbacks due to poor tumor penetration and undesirable pharmacokinetics of the targeting vehicles. Smaller radiolabeled antibody fragments and peptides feature highly specific target accumulation, resulting in low accumulation in healthy tissue, except for the kidneys. Nanobodies are the smallest (MW < 15 kDa) functional antigen-binding fragments that are derived from heavy chain-only camelid antibodies. Here, we show that the extend of kidney retention of nanobodies is predominantly dictated by the number of polar residues in the C-terminal amino acid tag. Three nanobodies were produced with different C-terminal amino-acid tag sequences (Myc-His-tagged, His-tagged, and untagged). Dynamic planar imaging of Wistar rats with 111In-DTPA-nanobodies revealed that untagged nanobodies showed a 70 % drop in kidney accumulation compared to Myc-His-tagged nanobodies at 50 min p.i.. In addition, coinfusion of untagged nanobodies with the plasma expander Gelofusin led to a final reduction of 90 %. Similar findings were obtained with different 177Lu-DTPA-2Rs15d nanobody constructs in HER2pos tumor xenografted mice at 1 h p.i.. Kidney accumulation decreased 88 % when comparing Myc-His-tagged to untagged 2Rs15d nanobody, and 95 % with a coinfusion of Gelofusin, without affecting the tumor targeting capacity. Consequently, we identified a generic method to reduce kidney retention of radiolabeled nanobodies. Dosimetry calculations of Gelofusin-coinfused, untagged 177Lu-DTPA-2Rs15d revealed a dose of 0.90 Gy/MBq that was delivered to both tumor and kidneys and extremely low doses to healthy tissues. In a comparative study, 177Lu-DTPA-Trastuzumab supplied 6 times more radiation to the tumor than untagged 177Lu-DTPA-2Rs15d, but concomitantly also a 155, 34, 80, 26 and 4180 fold higher radioactivity burden to lung, liver, spleen, bone and blood. Most importantly, nanobody-based targeted radionuclide therapy in mice bearing small estiblashed HER2pos tumors led to an almost complete blockade of tumor growth and a significant difference in event-free survival between the treated and the control groups (P < 0.0001). Based on histology analyses, no evidence of renal inflammation, apoptosis or necrosis was obtained. In conclusion, these data highlight the importance of the amino acid composition of the nanobodys C-terminus, as it has a predominant effect on kidney retention. Moreover, we show successful nanobody-based targeted radionuclide therapy in a xenograft model and highlight the potential of radiolabeled nanobodies as a valuable adjuvant therapy candidate for treatment of minimal residual and metastatic disease.


Chemistry: A European Journal | 2013

Heptyl α-D-mannosides grafted on a β-cyclodextrin core to interfere with Escherichia coli adhesion: an in vivo multivalent effect.

Julie Bouckaert; Zhaoli Li; Catarina Xavier; Mehdi Almant; Vicky Caveliers; Tony Lahoutte; Stephen D. Weeks; José Kovensky; Sébastien G. Gouin

n-Heptyl α-D-mannoside (HM) has previously been identified as a nanomolar FimH antagonist able to prevent Escherichia coli adhesion. We have designed mono- and heptavalent glycoconjugates in which HM is tethered to β-cyclodextrin (β-CD) through short and long spacers. One-pot click or co-clicking procedures were developed to directly obtain the glycoconjugates from unprotected HM and β-CD precursors. These FimH antagonists were examined biophysically and in vivo. Reverse titrations by isothermal calorimetry led to trapping of the short-tethered heptavalent β-CD in a complex with three FimH lectins. Combined dynamic light scattering and small-angle X-ray solution scattering data allowed the construction of a model of the FimH trimer. The heptavalent β-CDs were shown to capture and aggregate living bacteria in solution and are therefore also able to aggregate FimH when attached to different bacteria pili. The first in vivo evaluation of multivalent FimH inhibitors has been performed. The heptavalent β-CDs proved to be much more effective anti-adhesive agents than monovalent references with doses of around 2 μg instilled in the mouse bladder leading to a significantly decreased E. coli load. Intravenously injected radiolabeled glycoconjugates can rapidly reach the mouse bladder and >2 μg concentrations can easily be retained over 24 h to prevent fluxing bacteria from rebinding.


Bioconjugate Chemistry | 2014

Site-specific labeling of cysteine-tagged camelid single-domain antibody-fragments for use in molecular imaging.

Sam Massa; Catarina Xavier; Jens De Vos; Vicky Caveliers; Tony Lahoutte; Serge Muyldermans; Nick Devoogdt

Site-specific labeling of molecular imaging probes allows the development of a homogeneous tracer population. The resulting batch-to-batch reproducible pharmacokinetic and pharmacodynamic properties are of great importance for clinical translation. Camelid single-domain antibody-fragments (sdAbs)-the recombinantly produced antigen-binding domains of heavy-chain antibodies, also called Nanobodies-are proficient probes for molecular imaging. To safeguard their intrinsically high binding specificity and affinity and to ensure the tracers homogeneity, we developed a generic strategy for the site-specific labeling of sdAbs via a thio-ether bond. The unpaired cysteine was introduced at the carboxyl-terminal end of the sdAb to eliminate the risk of antigen binding interference. The spontaneous dimerization and capping of the unpaired cysteine required a reduction step prior to conjugation. This was optimized with the mild reducing agent 2-mercaptoethylamine in order to preserve the domains stability. As a proof-of-concept the reduced probe was subsequently conjugated to maleimide-DTPA, for labeling with indium-111. A single conjugated tracer was obtained and confirmed via mass spectrometry. The specificity and affinity of the new sdAb-based imaging probe was validated in a mouse xenograft tumor model using a modified clinical lead compound targeting the human epidermal growth factor receptor 2 (HER2) cancer biomarker. These data provide a versatile and standardized strategy for the site-specific labeling of sdAbs. The conjugation to the unpaired cysteine results in the production of a homogeneous group of tracers and is a multimodal alternative to the technetium-99m labeling of sdAbs.


Expert Opinion on Drug Delivery | 2014

Radiolabeled nanobodies as theranostic tools in targeted radionuclide therapy of cancer

Matthias D’Huyvetter; Catarina Xavier; Vicky Caveliers; Tony Lahoutte; Serge Muyldermans; Nick Devoogdt

Introduction: The integration of diagnostic testing for the presence of a molecular target is of interest to predict successful targeted radionuclide therapy (TRNT). This so-called ‘theranostic’ approach aims to improve personalized treatment based on the molecular characteristics of cancer cells. Moreover, it offers new insights in predicting adverse effects and provides appropriate tools to monitor therapy responses. Recent findings using nanobodies emphasize their potential as theranostic tools in cancer treatment. Nanobodies are recombinant, small antigen-binding fragments that are derived from camelid heavy-chain-only antibodies. Areas covered: We review the current status of theranostic approaches in TRNT, with a focus on antibodies, peptides, scaffold proteins and emerging nanobodies. In recent years, nanobodies have been evaluated intensively for molecular imaging. In addition, novel data on TRNT using radiolabeled nanobodies for carcinomas and multiple myeloma highlight their promising opportunities in cancer treatment. Expert opinion: We trust that radiolabeled nanobodies will have a future potential as theranostic tools in cancer therapy, both for diagnosis as well as for TRNT.


The Journal of Nuclear Medicine | 2015

PET Imaging of Macrophage Mannose Receptor–Expressing Macrophages in Tumor Stroma Using 18F-Radiolabeled Camelid Single-Domain Antibody Fragments

Anneleen Blykers; Steve Schoonooghe; Catarina Xavier; Kevin D’hoe; Damya Laoui; Matthias D’Huyvetter; Ilse Vaneycken; Frederik Cleeren; Guy Bormans; Johannes Heemskerk; Geert Raes; Patrick De Baetselier; Tony Lahoutte; Nick Devoogdt; Jo A. Van Ginderachter; Vicky Caveliers

Tumor-associated macrophages constitute a major component of the stroma of solid tumors, encompassing distinct subpopulations with different characteristics and functions. We aimed to identify M2-oriented tumor-supporting macrophages within the tumor microenvironment as indicators of cancer progression and prognosis, using PET imaging. This can be realized by designing 18F-labeled camelid single-domain antibody fragments (sdAbs) specifically targeting the macrophage mannose receptor (MMR), which has been identified as an important biomarker on this cell population. Methods: Cross-reactive anti-MMR sdAbs were generated after immunization of an alpaca with the extracellular domains of both human and mouse MMR. The lead binder was chosen on the basis of comparisons of binding affinity and in vivo pharmacokinetics. The PET tracer 18F-fluorobenzoate (FB)-anti-MMR sdAb was developed using the prosthetic group N-succinimidyl-4-18F-fluorobenzoate (18F-SFB), and its biodistribution, tumor-targeting potential, and specificity in terms of macrophage and MMR targeting were evaluated in mouse tumor models. Results: Four sdAbs were selected after affinity screening, but only 2 were found to be cross-reactive for human and mouse MMR. The lead anti-MMR 3.49 sdAb, bearing an affinity of 12 and 1.8 nM for mouse and human MMR, respectively, was chosen for its favorable in vivo biodistribution profile and tumor-targeting capacity. 18F-FB-anti-MMR 3.49 sdAb was synthesized with a 5%–10% radiochemical yield using an automated and optimized protocol. In vivo biodistribution analyses showed fast clearance via the kidneys and retention in MMR-expressing organs and tumor. The kidney retention of the fluorinated sdAb was 20-fold lower than a 99mTc-labeled counterpart. Compared with MMR- and C-C chemokine receptor 2–deficient mice, significantly higher uptake was observed in tumors grown in wild-type mice, demonstrating the specificity of the 18F tracer for MMR and macrophages, respectively. Conclusion: Anti-MMR 3.49 was denoted as the lead cross-reactive MMR-targeting sdAb. 18F radiosynthesis was optimized, providing an optimal probe for PET imaging of the tumor-promoting macrophage subpopulation in the tumor stroma.

Collaboration


Dive into the Catarina Xavier's collaboration.

Top Co-Authors

Avatar

Nick Devoogdt

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Tony Lahoutte

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Vicky Caveliers

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Serge Muyldermans

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Ilse Vaneycken

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Sophie Hernot

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Sam Massa

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Anneleen Blykers

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Jens De Vos

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge