Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Catelijne Stortelers is active.

Publication


Featured researches published by Catelijne Stortelers.


Molecular and Cellular Biology | 2006

Autotaxin, a Secreted Lysophospholipase D, Is Essential for Blood Vessel Formation during Development

Laurens A. van Meeteren; Paula Ruurs; Catelijne Stortelers; Peter Bouwman; Marga A. van Rooijen; Jean Philippe Pradère; Trevor R. Pettit; Michael J. O. Wakelam; Jean Sébastien Saulnier-Blache; Wouter H. Moolenaar; Jos Jonkers

ABSTRACT Autotaxin (ATX), or nucleotide pyrophosphatase-phosphodiesterase 2, is a secreted lysophospholipase D that promotes cell migration, metastasis, and angiogenesis. ATX generates lysophosphatidic acid (LPA), a lipid mitogen and motility factor that acts on several G protein-coupled receptors. Here we report that ATX-deficient mice die at embryonic day 9.5 (E9.5) with profound vascular defects in yolk sac and embryo resembling the Gα13 knockout phenotype. Furthermore, at E8.5, ATX-deficient embryos showed allantois malformation, neural tube defects, and asymmetric headfolds. The onset of these abnormalities coincided with increased expression of ATX and LPA receptors in normal embryos. ATX heterozygous mice appear healthy but show half-normal ATX activity and plasma LPA levels. Our results reveal a critical role for ATX in vascular development, indicate that ATX is the major LPA-producing enzyme in vivo, and suggest that the vascular defects in ATX-deficient embryos may be explained by loss of LPA signaling through Gα13.


Antiviral Research | 2011

Nanobodies®: new ammunition to battle viruses.

Peter Vanlandschoot; Catelijne Stortelers; Els Beirnaert; Lorena Itatí Ibañez; Bert Schepens; Erik Depla; Xavier Saelens

In 1989, a new type of antibody was identified, first in the sera of dromedaries and later also in all other species of the Camelidae family. These antibodies do not contain a light chain and also lack the first constant heavy domain. Today it is still unclear what the evolutionary advantage of such heavy chain-only antibodies could be. In sharp contrast, the broad applicability of the isolated variable antigen-binding domains (VHH) was rapidly recognized, especially for the development of therapeutic proteins, called Nanobodies(®). Here we summarize first some of the unique characteristics and features of VHHs. These will next be described in the context of different experimental therapeutic applications of Nanobodies against different viruses: HIV, Hepatitis B virus, influenza virus, Respiratory Syncytial virus, Rabies virus, FMDV, Poliovirus, Rotavirus, and PERVs. Next, the diagnostic application of VHHs (Vaccinia virus, Marburg virus and plant Tulip virus X), as well as an industrial application (lytic lactococcal 936 phage) will be described. In addition, the described data show that monovalent Nanobodies can possess unique characteristics not observed with conventional antibodies. The straightforward formatting into bivalent, multivalent, and/or multispecific Nanobodies allowed tailoring molecules for potency and cross-reactivity against viral targets with high sequence diversity.


Journal of Biological Chemistry | 2013

Llama-derived Single Variable Domains (Nanobodies) Directed against Chemokine Receptor CXCR7 Reduce Head and Neck Cancer Cell Growth in Vivo

David Maussang; Azra Mujić-Delić; Francis Descamps; Catelijne Stortelers; Peter Vanlandschoot; Marijke Stigter-van Walsum; Henry F. Vischer; Maarten Van Roy; Maria J. W. D. Vosjan; Maria Gonzalez-Pajuelo; Guus A.M.S. van Dongen; Pascal Merchiers; Philippe Van Rompaey; Martine J. Smit

Background: The atypical chemokine receptor CXCR7 is highly expressed in various types of cancer. Results: CXCR7 Nanobodies were generated and show inhibition of β-arrestin2 signaling and secretion of angiogenic CXCL1 in vitro. Anti-CXCR7 Nanobodies reduce tumor growth by inhibiting angiogenesis. Conclusion: CXCR7 inhibition by Nanobodies inhibit head and neck tumor formation. Significance: Anti-CXCR7 therapies are potential novel treatments against head and neck cancer. The chemokine receptor CXCR7, belonging to the membrane-bound G protein-coupled receptor superfamily, is expressed in several tumor types. Inhibition of CXCR7 with either small molecules or small interference (si)RNA has shown promising therapeutic benefits in several tumor models. With the increased interest and effectiveness of biologicals inhibiting membrane-bound receptors we made use of the “Nanobody platform” to target CXCR7. Previously we showed that Nanobodies, i.e. immunoglobulin single variable domains derived from naturally occurring heavy chain-only camelids antibodies, represent new biological tools to efficiently tackle difficult drug targets such as G protein-coupled receptors. In this study we developed and characterized highly selective and potent Nanobodies against CXCR7. Interestingly, the CXCR7-targeting Nanobodies displayed antagonistic properties in contrast with previously reported CXCR7-targeting agents. Several high affinity CXCR7-specific Nanobodies potently inhibited CXCL12-induced β-arrestin2 recruitment in vitro. A wide variety of tumor biopsies was profiled, showing for the first time high expression of CXCR7 in head and neck cancer. Using a patient-derived CXCR7-expressing head and neck cancer xenograft model in nude mice, tumor growth was inhibited by CXCR7-targeting Nanobody therapy. Mechanistically, CXCR7-targeting Nanobodies did not inhibit cell cycle progression but instead reduced secretion of the angiogenic chemokine CXCL1 from head and neck cancer cells in vitro, thus acting here as inverse agonists, and subsequent angiogenesis in vivo. Hence, with this novel class of CXCR7 inhibitors, we further substantiate the therapeutic relevance of targeting CXCR7 in head and neck cancer.


BMC Genomics | 2008

Multiple actions of lysophosphatidic acid on fibroblasts revealed by transcriptional profiling

Catelijne Stortelers; Ron M. Kerkhoven; Wouter H. Moolenaar

BackgroundLysophosphatidic acid (LPA) is a lipid mediator that acts through specific G protein-coupled receptors to stimulate the proliferation, migration and survival of many cell types. LPA signaling has been implicated in development, wound healing and cancer. While LPA signaling pathways have been studied extensively, it remains unknown how LPA affects global gene expression in its target cells.ResultsWe have examined the temporal program of global gene expression in quiescent mouse embryonic fibroblasts stimulated with LPA using 32 k oligonucleotide microarrays. In addition to genes involved in growth stimulation and cytoskeletal reorganization, LPA induced many genes that encode secreted factors, including chemokines, growth factors, cytokines, pro-angiogenic and pro-fibrotic factors, components of the plasminogen activator system and metalloproteases. Strikingly, epidermal growth factor induced a broadly overlapping expression pattern, but some 7% of the genes (105 out of 1508 transcripts) showed differential regulation by LPA. The subset of LPA-specific genes was enriched for those associated with cytoskeletal remodeling, in keeping with LPAs ability to regulate cell shape and motility.ConclusionThis study highlights the importance of LPA in programming fibroblasts not only to proliferate and migrate but also to produce many paracrine mediators of tissue remodeling, angiogenesis, inflammation and tumor progression. Furthermore, our results show that G protein-coupled receptors and receptor tyrosine kinases can signal independently to regulate broadly overlapping sets of genes in the same cell type.


Antimicrobial Agents and Chemotherapy | 2016

Generation and Characterization of ALX-0171, a Potent Novel Therapeutic Nanobody for the Treatment of Respiratory Syncytial Virus Infection

Laurent Detalle; Thomas Stohr; Concepción Palomo; Pedro A. Piedra; Brian E. Gilbert; Vicente Mas; Andrena Millar; Ultan F. Power; Catelijne Stortelers; Koen Allosery; José A. Melero; Erik Depla

ABSTRACT Respiratory syncytial virus (RSV) is an important causative agent of lower respiratory tract infections in infants and elderly individuals. Its fusion (F) protein is critical for virus infection. It is targeted by several investigational antivirals and by palivizumab, a humanized monoclonal antibody used prophylactically in infants considered at high risk of severe RSV disease. ALX-0171 is a trimeric Nanobody that binds the antigenic site II of RSV F protein with subnanomolar affinity. ALX-0171 demonstrated in vitro neutralization superior to that of palivizumab against prototypic RSV subtype A and B strains. Moreover, ALX-0171 completely blocked replication to below the limit of detection for 87% of the viruses tested, whereas palivizumab did so for 18% of the viruses tested at a fixed concentration. Importantly, ALX-0171 was highly effective in reducing both nasal and lung RSV titers when delivered prophylactically or therapeutically directly to the lungs of cotton rats. ALX-0171 represents a potent novel antiviral compound with significant potential to treat RSV-mediated disease.


Vitamins and Hormones Series | 2000

The EGF domain: requirements for binding to receptors of the ErbB family.

E.J.J. van Zoelen; Catelijne Stortelers; A.E.G. Lenferink; M.L.M. van de Poll

Epidermal growth factor (EGF) has been the prototype growth-stimulating peptide for many years. It has a characteristic structure with three disulfide bridges, which is essential for its activity. However, many other proteins, including both growth factors and proteins with unrelated functions, have similar EGF-like domains. This indicates that besides a characteristic conformation provided by the EGF-like domain, specific amino acids are required to provide specificity in protein functioning. Currently, more than 10 different growth factors with an EGF-like domain have been characterized which all exert their action by binding to the four members of the erbB family of receptors. In this review, studies are described on the structure-function relationship of these EGF-like growth factor molecules in an attempt to analyze the individual amino acids that determine their binding specificity to the individual members of the erbB family.


Journal of Biological Chemistry | 2003

Structural analysis of an epidermal growth factor/transforming growth factor-alpha chimera with unique ErbB binding specificity.

Miriam Wingens; Tine Walma; Hugo van Ingen; Catelijne Stortelers; Jeroen E. M. van Leeuwen; Everardus J.J. van Zoelen; Geerten W. Vuister

Various chimeras of the ErbB1-specific ligands epidermal growth factor (EGF) and transforming growth factor-α (TGFα) display an enlarged repertoire as activators of ErbB2·ErbB3 heterodimers. Mutational analysis indicated that particularly residues in the N terminus and B-loop region of these ligands are involved in the broadened receptor specificity. In order to understand the receptor specificity of T1E, a chimeric ligand constructed by the introduction of the linear N-terminal region of TGFα into EGF, we determined in this study the solution structure and dynamics of T1E by multidimensional NMR analysis. Subsequently, we studied the structural characteristics of T1E binding to both ErbB1 and ErbB3 by superposition modeling of its structure on the known crystal structures of ErbB3 and liganded ErbB1 complexes. The results show that the overall structure of T1E in solution is very similar to that of native EGF and TGFα but that its N terminus shows an extended structure that is appropriately positioned to form a triple β-sheet with the large antiparallel β-sheet in the B-loop region. This conformational effect of the N terminus together with the large overall flexibility of T1E, as determined by 15N NMR relaxation analysis, may be a facilitative property for its broad receptor specificity. The structural superposition models indicate that hydrophobic and electrostatic interactions of the N terminus and B-loop of T1E are particularly important for its binding to ErbB3.


Science Translational Medicine | 2016

Nanobodies that block gating of the P2X7 ion channel ameliorate inflammation

Welbeck Danquah; Catherine Meyer-Schwesinger; Björn Rissiek; Carolina Pinto; Arnau Serracant-Prat; Miriam Amadi; Domenica Iacenda; Jan-Hendrik Knop; Anna Hammel; Philine Bergmann; Nicole Schwarz; Joana Assunção; Wendy Rotthier; Friedrich Haag; Eva Tolosa; Peter Bannas; Eric Boué-Grabot; Tim Magnus; Toon Laeremans; Catelijne Stortelers; Friedrich Koch-Nolte

Single-domain antibodies called nanobodies block P2X7, an inflammatory ion channel, reducing skin and kidney inflammation in mice. Tackling a tough target: An ATP-sensitive channel Injured and dying cells release lots of ATP, which triggers inflammation by binding to the ion channel P2X7. Interfering with this process could treat numerous diseases, but so far small-molecule drugs have not been potent or specific enough. Now, Danquah and colleagues have developed single-domain “mini antibodies” called nanobodies that rise to the challenge. One of their nanobodies blocked the P2X7 channel and inhibited disease in mouse models of kidney inflammation and contact dermatitis. Another nanobody dampened the release of inflammatory messengers from human cells 1000 times more effectively than the small-molecule drugs now under development. Nanobodies can be linked together to prolong their lifetime or confer cell specificity, a useful versatility that increases their appeal. Ion channels are desirable therapeutic targets, yet ion channel–directed drugs with high selectivity and few side effects are still needed. Unlike small-molecule inhibitors, antibodies are highly selective for target antigens but mostly fail to antagonize ion channel functions. Nanobodies—small, single-domain antibody fragments—may overcome these problems. P2X7 is a ligand-gated ion channel that, upon sensing adenosine 5′-triphosphate released by damaged cells, initiates a proinflammatory signaling cascade, including release of cytokines, such as interleukin-1β (IL-1β). To further explore its function, we generated and characterized nanobodies against mouse P2X7 that effectively blocked (13A7) or potentiated (14D5) gating of the channel. Systemic injection of nanobody 13A7 in mice blocked P2X7 on T cells and macrophages in vivo and ameliorated experimental glomerulonephritis and allergic contact dermatitis. We also generated nanobody Dano1, which specifically inhibited human P2X7. In endotoxin-treated human blood, Dano1 was 1000 times more potent in preventing IL-1β release than small-molecule P2X7 antagonists currently in clinical development. Our results show that nanobody technology can generate potent, specific therapeutics against ion channels, confirm P2X7 as a therapeutic target for inflammatory disorders, and characterize a potent new drug candidate that targets P2X7.


PLOS ONE | 2014

Protective Effect of Different Anti-Rabies Virus VHH Constructs against Rabies Disease in Mice

Sanne Terryn; Aurélie Francart; Sophie Lamoral; Anna Hultberg; Heidi Rommelaere; Angela Wittelsberger; Filip Callewaert; Thomas Stohr; Kris Meerschaert; Ingrid Ottevaere; Catelijne Stortelers; Peter Vanlandschoot; Michael Kalai; Steven Van Gucht

Rabies virus causes lethal brain infection in about 61000 people per year. Each year, tens of thousands of people receive anti-rabies prophylaxis with plasma-derived immunoglobulins and vaccine soon after exposure. Anti-rabies immunoglobulins are however expensive and have limited availability. VHH are the smallest antigen-binding functional fragments of camelid heavy chain antibodies, also called Nanobodies. The therapeutic potential of anti-rabies VHH was examined in a mouse model using intranasal challenge with a lethal dose of rabies virus. Anti-rabies VHH were administered directly into the brain or systemically, by intraperitoneal injection, 24 hours after virus challenge. Anti-rabies VHH were able to significantly prolong survival or even completely rescue mice from disease. The therapeutic effect depended on the dose, affinity and brain and plasma half-life of the VHH construct. Increasing the affinity by combining two VHH with a glycine-serine linker into bivalent or biparatopic constructs, increased the neutralizing potency to the picomolar range. Upon direct intracerebral administration, a dose as low as 33 µg of the biparatopic Rab-E8/H7 was still able to establish an anti-rabies effect. The effect of systemic treatment was significantly improved by increasing the half-life of Rab-E8/H7 through linkage with a third VHH targeted against albumin. Intraperitoneal treatment with 1.5 mg (2505 IU, 1 ml) of anti-albumin Rab-E8/H7 prolonged the median survival time from 9 to 15 days and completely rescued 43% of mice. For comparison, intraperitoneal treatment with the highest available dose of human anti-rabies immunoglobulins (65 mg, 111 IU, 1 ml) only prolonged survival by 2 days, without rescue. Overall, the therapeutic benefit seemed well correlated with the time of brain exposure and the plasma half-life of the used VHH construct. These results, together with the ease-of-production and superior thermal stability, render anti-rabies VHH into valuable candidates for development of alternative post exposure treatment drugs against rabies.


PLOS Neglected Tropical Diseases | 2016

Post-exposure Treatment with Anti-rabies VHH and Vaccine Significantly Improves Protection of Mice from Lethal Rabies Infection

Sanne Terryn; Aurélie Francart; Heidi Rommelaere; Catelijne Stortelers; Steven Van Gucht

Post-exposure prophylaxis (PEP) against rabies infection consists of a combination of passive immunisation with plasma-derived human or equine immune globulins and active immunisation with vaccine delivered shortly after exposure. Since anti-rabies immune globulins are expensive and scarce, there is a need for cheaper alternatives that can be produced more consistently. Previously, we generated potent virus-neutralising VHH, also called Nanobodies, against the rabies glycoprotein that are effectively preventing lethal disease in an in vivo mouse model. The VHH domain is the smallest antigen-binding functional fragment of camelid heavy chain-only antibodies that can be manufactured in microbial expression systems. In the current study we evaluated the efficacy of half-life extended anti-rabies VHH in combination with vaccine for PEP in an intranasal rabies infection model in mice. The PEP combination therapy of systemic anti-rabies VHH and intramuscular vaccine significantly delayed the onset of disease compared to treatment with anti-rabies VHH alone, prolonged median survival time (35 versus 14 days) and decreased mortality (60% versus 19% survival rate), when treated 24 hours after rabies virus challenge. Vaccine alone was unable to rescue mice from lethal disease. As reported also for immune globulins, some interference of anti-rabies VHH with the antigenicity of the vaccine was observed, but this did not impede the synergistic effect. Post exposure treatment with vaccine and human anti-rabies immune globulins was unable to protect mice from lethal challenge. Anti-rabies VHH and vaccine act synergistically to protect mice after rabies virus exposure, which further validates the possible use of anti-rabies VHH for rabies PEP.

Collaboration


Dive into the Catelijne Stortelers's collaboration.

Researchain Logo
Decentralizing Knowledge