Cateline Guérardel
Pasteur Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cateline Guérardel.
Molecular and Cellular Biology | 2007
Nicolas Stankovic-Valentin; Sophie Deltour; Jacob Seeler; Sébastien Pinte; Gérard Vergoten; Cateline Guérardel; Anne Dejean; Dominique Leprince
ABSTRACT Tumor suppressor HIC1 (hypermethylated in cancer 1) is a gene that is essential for mammalian development, epigenetically silenced in many human tumors, and involved in a complex pathway regulating P53 tumor suppression activity. HIC1 encodes a sequence-specific transcriptional repressor containing five Krüppel-like C2H2 zinc fingers and an N-terminal BTB/POZ repression domain. Here, we show that endogenous HIC1 is SUMOylated in vivo on a phylogenetically conserved lysine, K314, located in the central region which is a second repression domain. K314R mutation does not influence HIC1 subnuclear localization but significantly reduces its transcriptional repression potential, as does the mutation of the other conserved residue in the ψKXE consensus, E316A, or the overexpression of the deSUMOylase SSP3/SENP2. Furthermore, HIC1 is acetylated in vitro by P300/CBP. Strikingly, the K314R mutant is less acetylated than wild-type HIC1, suggesting that this lysine is a target for both SUMOylation and acetylation. We further show that HIC1 transcriptional repression activity is positively controlled by two types of deacetylases, SIRT1 and HDAC4, which increase the deacetylation and SUMOylation, respectively, of K314. Knockdown of endogenous SIRT1 by the transfection of short interfering RNA causes a significant loss of HIC1 SUMOylation. Thus, this dual-deacetylase complex induces either a phosphorylation-dependent acetylation-SUMOylation switch through a ψKXEXXSP motif, as previously shown for MEF2, or a phosphorylation-independent switch through a ψKXEP motif, as shown here for HIC1, since P317A mutation severely impairs HIC1 acetylation. Finally, our results demonstrate that HIC1 is a target of the class III deacetylase SIRT1 and identify a new posttranslational modification step in the P53-HIC1-SIRT1 regulatory loop.
Molecular and Cellular Biology | 2002
Sophie Deltour; Sébastien Pinte; Cateline Guérardel; Bohdan Wasylyk; Dominique Leprince
ABSTRACT HIC1 (hypermethylated in cancer) and its close relative HRG22 (HIC1-related gene on chromosome 22) encode transcriptional repressors with five C2H2 zinc fingers and an N-terminal BTB/POZ autonomous transcriptional repression domain that is unable to recruit histone deacetylases (HDACs). Alignment of the HIC1 and HRG22 proteins from various species highlighted a perfectly conserved GLDLSKK/R motif highly related to the consensus CtBP interaction motif (PXDLSXK/R), except for the replacement of the virtually invariant proline by a glycine. HIC1 strongly interacts with mCtBP1 both in vivo and in vitro through this conserved GLDLSKK motif, thus extending the CtBP consensus binding site. The BTB/POZ domain does not interact with mCtBP1, but the dimerization of HIC1 through this domain is required for the interaction with mCtBP1. When tethered to DNA by fusion with the Gal4 DNA-binding domain, the HIC1 central region represses transcription through interactions with CtBP in a trichostatin A-sensitive manner. In conclusion, our results demonstrate that HIC1 mediates transcriptional repression by both HDAC-independent and HDAC-dependent mechanisms and show that CtBP is a HIC1 corepressor that is recruited via a variant binding site.
Molecular and Cellular Biology | 2010
Capucine Van Rechem; Gaylor Boulay; Sébastien Pinte; Nicolas Stankovic-Valentin; Cateline Guérardel; Dominique Leprince
ABSTRACT The tumor suppressor gene HIC1 encodes a transcriptional repressor involved in regulatory loops modulating P53-dependent and E2F1-dependent cell survival, growth control, and stress responses. Despite its importance, few HIC1 corepressors and target genes have been characterized thus far. Using a yeast two-hybrid approach, we identify MTA1, a subunit of the NuRD complex, as a new HIC1 corepressor. This interaction is regulated by two competitive posttranslational modifications of HIC1 at lysine 314, promotion by SUMOylation, and inhibition by acetylation. Consistent with the role of HIC1 in growth control, we demonstrate that HIC1/MTA1 complexes bind on two new target genes, Cyclin D1 and p57KIP2 in quiescent but not in growing WI38 cells. In addition, HIC1/MTA1 and HIC1/CtBP complexes differentially bind on two mutually exclusive HIC1 binding sites (HiRE) on the SIRT1 promoter. SIRT1 transcriptional activation induced by short-term serum starvation coincides with loss of occupancy of the distal sites by HIC1/MTA1 and HIC1/CtBP. Upon longer starvation, both complexes are found but on a newly identified proximal HiRE that is evolutionarily conserved and specifically enriched with repressive histone marks. Our results decipher a mechanistic link between two competitive posttranslational modifications of HIC1 and corepressor recruitment to specific genes, leading to growth control.
Journal of Biological Chemistry | 2009
Capucine Van Rechem; Brian R. Rood; Majid Touka; Sébastien Pinte; Mathias Jenal; Cateline Guérardel; Keri Ramsey; Didier Monté; Agnès Begue; Mario P. Tschan; Dietrich A. Stephan; Dominique Leprince
The tumor suppressor gene HIC1 (Hypermethylated in Cancer 1) that is epigenetically silenced in many human tumors and is essential for mammalian development encodes a sequence-specific transcriptional repressor. The few genes that have been reported to be directly regulated by HIC1 include ATOH1, FGFBP1, SIRT1, and E2F1. HIC1 is thus involved in the complex regulatory loops modulating p53-dependent and E2F1-dependent cell survival and stress responses. We performed genome-wide expression profiling analyses to identify new HIC1 target genes, using HIC1-deficient U2OS human osteosarcoma cells infected with adenoviruses expressing either HIC1 or GFP as a negative control. These studies identified several putative direct target genes, including CXCR7, a G-protein-coupled receptor recently identified as a scavenger receptor for the chemokine SDF-1/CXCL12. CXCR7 is highly expressed in human breast, lung, and prostate cancers. Using quantitative reverse transcription-PCR analyses, we demonstrated that CXCR7 was repressed in U2OS cells overexpressing HIC1. Inversely, inactivation of endogenous HIC1 by RNA interference in normal human WI38 fibroblasts results in up-regulation of CXCR7 and SIRT1. In silico analyses followed by deletion studies and luciferase reporter assays identified a functional and phylogenetically conserved HIC1-responsive element in the human CXCR7 promoter. Moreover, chromatin immunoprecipitation (ChIP) and ChIP upon ChIP experiments demonstrated that endogenous HIC1 proteins are bound together with the C-terminal binding protein corepressor to the CXCR7 and SIRT1 promoters in WI38 cells. Taken together, our results implicate the tumor suppressor HIC1 in the transcriptional regulation of the chemokine receptor CXCR7, a key player in the promotion of tumorigenesis in a wide variety of cell types.
Journal of Biological Chemistry | 2009
Capucine Van Rechem; Brian R. Rood; Majid Touka; Sébastien Pinte; Mathias Jenal; Cateline Guérardel; Keri Ramsey; Didier Monté; Agnès Begue; Mario P. Tschan; Dietrich A. Stephan; Dominique Leprince
The tumor suppressor gene HIC1 (Hypermethylated in Cancer 1) that is epigenetically silenced in many human tumors and is essential for mammalian development encodes a sequence-specific transcriptional repressor. The few genes that have been reported to be directly regulated by HIC1 include ATOH1, FGFBP1, SIRT1, and E2F1. HIC1 is thus involved in the complex regulatory loops modulating p53-dependent and E2F1-dependent cell survival and stress responses. We performed genome-wide expression profiling analyses to identify new HIC1 target genes, using HIC1-deficient U2OS human osteosarcoma cells infected with adenoviruses expressing either HIC1 or GFP as a negative control. These studies identified several putative direct target genes, including CXCR7, a G-protein-coupled receptor recently identified as a scavenger receptor for the chemokine SDF-1/CXCL12. CXCR7 is highly expressed in human breast, lung, and prostate cancers. Using quantitative reverse transcription-PCR analyses, we demonstrated that CXCR7 was repressed in U2OS cells overexpressing HIC1. Inversely, inactivation of endogenous HIC1 by RNA interference in normal human WI38 fibroblasts results in up-regulation of CXCR7 and SIRT1. In silico analyses followed by deletion studies and luciferase reporter assays identified a functional and phylogenetically conserved HIC1-responsive element in the human CXCR7 promoter. Moreover, chromatin immunoprecipitation (ChIP) and ChIP upon ChIP experiments demonstrated that endogenous HIC1 proteins are bound together with the C-terminal binding protein corepressor to the CXCR7 and SIRT1 promoters in WI38 cells. Taken together, our results implicate the tumor suppressor HIC1 in the transcriptional regulation of the chemokine receptor CXCR7, a key player in the promotion of tumorigenesis in a wide variety of cell types.
Oncogene | 2004
Sébastien Pinte; Cateline Guérardel; Sophie Deltour-Balerdi; Andrew K. Godwin; Dominique Leprince
The BTB/POZ transcriptional repressor HIC1 (Hypermethylated in Cancer 1) is a tumor suppressor gene located at chromosome 17p13.3, a region frequently hypermethylated or deleted in human tumors and in a contiguous-gene syndrome, the Miller–Dieker syndrome. The human and murine HIC1 genes are composed of two alternative 5′ exons, 1a and 1b fused to a large second coding exon 2. Exon 1a is a noncoding exon associated with a major G–C-rich promoter whereas exon 1b is a downstream coding exon associated with a minor TATA box promoter. By human–mouse genome comparison, we have identified a short upstream conserved sequence containing G–C boxes which were shown to be functional. Transcripts initiating from this new promoter were detected in various human and mouse tissues and contained a long 5′-UTR sequence, called 1c which encompass the G–C-rich promoter associated with exon 1a and uses the same splice donor site. RT–PCR analyses of two primary breast epithelial cell lines identified two other 5′-UTRs generated by alternative splicing within exon 1c. Our results thus highlight the existence of an unexpected complex transcriptional regulation of HIC1.
FEBS Letters | 1999
Cateline Guérardel; Sophie Deltour; Dominique Leprince
Hypermethylated in cancer, a new candidate tumor suppressor gene located in 17p13.3, encodes a protein with five Krüppel‐like C2H2 zinc finger motifs and a N‐terminal protein/protein interaction domain called broad complex, tramtrack and bric à brac/poxviruses and zinc finger domain. Hypermethylated in cancer appears unique in the broad complex, tramtrack and bric à brac/poxviruses and zinc finger family since it contains a 13 amino acid insertion located in a loop between the conserved β‐strand β5 and helix α5 which are involved in dimerization and scaffolding of the broad complex, tramtrack and bric à brac/poxviruses and zinc finger domain. Cloning and sequencing of a murine hypermethylated in cancer gene suggests that this insertion has been acquired late in the evolution since it is present in two mammalian hypermethylated in cancer genes but absent in its zebrafish and avian counterparts. This is a unique example of a high divergence of the same broad complex, tramtrack and bric à brac/poxviruses and zinc finger domain in different species.
Journal of Biological Chemistry | 2012
Arnaud Le Goff; Zongling Ji; Bérénice Leclercq; Roland P. Bourette; Alexandra Mougel; Cateline Guérardel; Yvan de Launoit; Jérôme Vicogne; Gautier Goormachtigh; Véronique Fafeur
Background: Although the GAB1 adaptor is the main partner of the MET receptor, its role under apoptotic stress is controversial. Results: During apoptosis, GAB1 is caspase-cleaved, generating a p35-GAB1 fragment that plays a pro-survival role in HGF/SF-MET signaling by retaining some signal transduction properties of GAB1. Conclusion: The caspase-cleaved GAB1 can maintain HGF/SF-MET survival signaling. Significance: A caspase-generated protein fragment can be anti-apoptotic. The GRB2-associated binder 1 (GAB1) docking/scaffold protein is a key mediator of the MET-tyrosine kinase receptor activated by hepatocyte growth factor/scatter factor (HGF/SF). Activated MET promotes recruitment and tyrosine phosphorylation of GAB1, which in turn recruits multiple proteins and mediates MET signaling leading to cell survival, motility, and morphogenesis. We previously reported that, without its ligand, MET is a functional caspase target during apoptosis, allowing the generation of a p40-MET fragment that amplifies apoptosis. In this study we established that GAB1 is also a functional caspase target by evidencing a caspase-cleaved p35-GAB1 fragment that contains the MET binding domain. GAB1 is cleaved by caspases before MET, and the resulting p35-GAB1 fragment is phosphorylated by MET upon HGF/SF binding and can interact with a subset of GAB1 partners, PI3K, and GRB2 but not with SHP2. This p35-GAB1 fragment favors cell survival by maintaining HGF/SF-induced MET activation of AKT and by hindering p40-MET pro-apoptotic function. These data demonstrate an anti-apoptotic role of caspase-cleaved GAB1 in HGF/SF-MET signaling.
Proceedings of the National Academy of Sciences of the United States of America | 1999
Sophie Deltour; Cateline Guérardel; Dominique Leprince
Journal of Biological Chemistry | 2004
Sébastien Pinte; Nicolas Stankovic-Valentin; Sophie Deltour; Brian R. Rood; Cateline Guérardel; Dominique Leprince