Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Caterina Bendotti is active.

Publication


Featured researches published by Caterina Bendotti.


Amyotrophic Lateral Sclerosis | 2010

Guidelines for preclinical animal research in ALS/MND: A consensus meeting

Albert C. Ludolph; Caterina Bendotti; Eran Blaugrund; Adriano Chiò; Linda Greensmith; Jean-Philippe Loeffler; Richard Mead; Heiko G. Niessen; Susanne Petri; Pierre-François Pradat; Wim Robberecht; Markus A. Rüegg; Birgit Schwalenstöcker; Detlev Stiller; Leonard H. van den Berg; Fernando Vieira; Stephan von Hörsten

The development of therapeutics for ALS/MND is largely based on work in experimental animals carrying human SOD mutations. However, translation of apparent therapeutic successes from in vivo to the human disease has proven difficult and a considerable amount of financial resources has been apparently wasted. Standard operating procedures (SOPs) for preclinical animal research in ALS/MND are urgently required. Such SOPs will help to establish SOPs for translational research for other neurological diseases within the next few years. To identify the challenges and to improve the research methodology, the European ALS/MND group held a meeting in 2006 and published guidelines in 2007 (1). A second international conference to improve the guidelines was held in 2009. These second and improved guidelines are dedicated to the memory of Sean F. Scott.


Human Molecular Genetics | 2010

The Small Heat Shock Protein B8 (HspB8) promotes autophagic removal of misfolded proteins involved in Amyotrophic Lateral Sclerosis (ALS)

Valeria Crippa; Daniela Sau; Paola Rusmini; Alessandra Boncoraglio; Elisa Onesto; Elena Bolzoni; Mariarita Galbiati; Elena Fontana; Marianna Marino; Serena Carra; Caterina Bendotti; Silvia De Biasi; Angelo Poletti

Several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), are characterized by the presence of misfolded proteins, thought to trigger neurotoxicity. Some familial forms of ALS (fALS), clinically indistinguishable from sporadic ALS (sALS), are linked to superoxide dismutase 1 (SOD1) gene mutations. It has been shown that the mutant SOD1 misfolds, forms insoluble aggregates and impairs the proteasome. Using transgenic G93A-SOD1 mice, we found that spinal cord motor neurons, accumulating mutant SOD1 also over-express the small heat shock protein HspB8. Using motor neuronal fALS models, we demonstrated that HspB8 decreases aggregation and increases mutant SOD1 solubility and clearance, without affecting wild-type SOD1 turnover. Notably, HspB8 acts on mutant SOD1 even when the proteasome activity is specifically blocked. The pharmacological blockage of autophagy resulted in a dramatic increase of mutant SOD1 aggregates. Immunoprecipitation studies, performed during autophagic flux blockage, demonstrated that mutant SOD1 interacts with the HspB8/Bag3/Hsc70/CHIP multiheteromeric complex, known to selectively activate autophagic removal of misfolded proteins. Thus, HspB8 increases mutant SOD1 clearance via autophagy. Autophagy activation was also observed in lumbar spinal cord of transgenic G93A-SOD1 mice since several autophago-lysosomal structures were present in affected surviving motor neurons. Finally, we extended our observation to a different ALS model and demonstrated that HspB8 exerts similar effects on a truncated version of TDP-43, another protein involved both in fALS and in sALS. Overall, these results indicate that the pharmacological modulation of HspB8 expression in motor neurons may have important implications to unravel the molecular mechanisms involved both in fALS and in sALS.


Journal of Biological Chemistry | 2005

Protein Nitration in a Mouse Model of Familial Amyotrophic Lateral Sclerosis POSSIBLE MULTIFUNCTIONAL ROLE IN THE PATHOGENESIS

Filippo Casoni; Manuela Basso; Tania Massignan; Elisabetta Gianazza; Cristina Cheroni; Mario Salmona; Caterina Bendotti; Valentina Bonetto

Multiple mechanisms have been proposed to contribute to amyotrophic lateral sclerosis (ALS) pathogenesis, including oxidative stress. Early evidence of a role for oxidative damage was based on the finding, in patients and murine models, of high levels of markers, such as free nitrotyrosine (NT). However, no comprehensive study on the protein targets of nitration in ALS has been reported. We found an increased level of NT immunoreactivity in spinal cord protein extracts of a transgenic mouse model of familial ALS (FALS) at a presymptomatic stage of the disease compared with age-matched controls. NT immunoreactivity is increased in the soluble fraction of spinal cord homogenates and is found as a punctate staining in motor neuron perikarya of presymptomatic FALS mice. Using a proteome-based strategy, we identified proteins nitrated in vivo, under physiological or pathological conditions, and compared their level of specific nitration. α- and γ-enolase, ATP synthase β chain, and heat shock cognate 71-kDa protein and actin were overnitrated in presymptomatic FALS mice. We identified by matrix-assisted laser desorption/ionization mass spectrometry 16 sites of nitration in proteins oxidized in vivo. In particular, α-enolase nitration at Tyr43, target also of phosphorylation, brings additional evidence on the possible interference of nitration with phosphorylation. In conclusion, we propose that protein nitration may have a role in ALS pathogenesis, acting directly by inhibiting the function of specific proteins and indirectly interfering with protein degradation pathways and phosphorylation cascades.


Journal of the Neurological Sciences | 2001

Early vacuolization and mitochondrial damage in motor neurons of FALS mice are not associated with apoptosis or with changes in cytochrome oxidase histochemical reactivity

Caterina Bendotti; Novella Calvaresi; Luca Chiveri; Alessandro Prelle; Maurizio Moggio; Massimilano Braga; Vincenzo Silani; Silvia De Biasi

Overexpression of mutated superoxide dismutase (SOD1) in transgenic mice causes a progressive motor neuron degeneration in the spinal cord similar to that in human amyotrophic lateral sclerosis (ALS). Ultrastructural analysis of motor neurons at different stages of the disease in transgenic C57BL/6 mice carrying the G93A mutation of SOD1 showed, at about 2 weeks of age, much earlier than the initial symptoms of the disease, microvacuoles in the cytoplasm, with marked swelling of the mitochondria. Nuclei with an apoptotic morphology were never observed in these motor neurons. Swollen mitochondria were also seen in the distal part of motor axons of phrenic nerves and in the large axons of sciatic nerves before the onset of the disease, but no mitochondrial alterations were seen in skeletal muscles or in the small sciatic nerve axons. Moreover, we found no apparent changes in the histochemical reactivity of cytochrome oxidase in motor neurons of transgenic mice even at the advanced stage of the disease, suggesting that partial neuronal activity in these cells may be maintained despite the altered mitochondria. Immunoreactivity for human SOD1 was high around vacuoles in the motor neurons of transgenic mice but no cytoplasmic intracellular SOD1 aggregates were observed. Our data indicate that mitochondrial swelling may be an important factor triggering the cascade leading to progressive motor neuron death. Activation of the mitochondrial permeability transition pore may be involved in this process, through excitotoxicity or other neurotoxic stimuli.


Journal of Neurochemistry | 2008

Transgenic SOD1 G93A mice develop reduced GLT-1 in spinal cord without alterations in cerebrospinal fluid glutamate levels.

Caterina Bendotti; Massimo Tortarolo; Sachin K. Suchak; Novella Calvaresi; Lucia Carvelli; Antonio Bastone; T. Massimo Rizzi; Marcus Rattray; Tiziana Mennini

Glutamate‐induced excitotoxicity is suggested to play a central role in the development of amyotrophic lateral sclerosis (ALS), although it is still unclear whether it represents a primary cause in the cascade leading to motor neurone death. We used western blotting, immunocytochemistry and in situ hybridization to examine the expression of GLT‐1 in transgenic mice carrying a mutated (G93A) human copper–zinc superoxide dismutase (TgSOD1 G93A), which closely mimic the features of ALS. We observed a progressive decrease in the immunoreactivity of the glial glutamate transporter (GLT‐1) in the ventral, but not in the dorsal, horn of lumbar spinal cord. This effect was specifically found in 14‐ and 18‐week‐old mice that had motor function impairment, motor neurone loss and reactive astrocytosis. No changes in GLT‐1 were observed at 8 weeks of age, before the appearance of clinical symptoms. Decreases in GLT‐1 were accompanied by increased glial fibrillary acidic protein (GFAP) levels and no change in the levels of GLAST, another glial glutamate transporter. The glutamate concentration in the cerebrospinal fluid (CSF) of TgSOD1 G93A mice was not modified at any of the time points examined, compared with age‐matched controls. These findings indicate that the loss of GLT‐1 protein in ALS mice selectively occurs in the areas affected by neurodegeneration and reactive astrocytosis and it is not associated with increases of glutamate levels in CSF. The lack of changes in GLT‐1 at the presymptomatic stage suggests that glial glutamate transporter reduction is not a primary event leading to motor neurone loss.


Molecular and Cellular Neuroscience | 2003

Persistent activation of p38 mitogen-activated protein kinase in a mouse model of familial amyotrophic lateral sclerosis correlates with disease progression

M Tortarolo; P Veglianese; N Calvaresi; A Botturi; C Rossi; A Giorgini; A Migheli; Caterina Bendotti

The p38 mitogen-activated protein kinase (p38MAPK) is activated via phosphorylation in neurones and glial cells by a variety of stimuli including oxidative stress, excitotoxicity, and inflammatory cytokines. Activated p38MAPK can in turn induce phosphorylation of cytoskeletal proteins and activation of cytokines and nitric oxide, thus contributing to neurodegeneration. We investigated the expression and distribution of p38MAPK in the spinal cord of transgenic mice expressing a superoxide dismutase 1 mutation (SOD1G93A), a model of familial amyotrophic lateral sclerosis (ALS). Accumulation of p38MAPK was found by immunoblotting in the spinal cord of G93A mice during the progression of disease, but no changes were detected in its mRNA levels. Immunostaining for phosphorylated p38MAPK in lumbar spinal cord sections of SOD1G93A mice at the presymptomatic and early stages of disease showed an increased labeling in motor neurones that colocalized with phosphorylated neurofilaments in vacuolized perikarya and neurites, as detected by confocal microscopy. As the disease progressed, activated p38MAPK also accumulated in hypertrophic astrocytes and reactive microglia, as demonstrated by colocalization with GFAP and CD11b immunostaining, respectively. These data suggest that activation of p38MAPK in motor neurons and then in reactive glial cells may contribute, respectively, to the development and progression of motor neuron pathology in SOD1G93A mice.


Human Molecular Genetics | 2009

Functional alterations of the ubiquitin-proteasome system in motor neurons of a mouse model of familial amyotrophic lateral sclerosis†

Cristina Cheroni; Marianna Marino; Massimo Tortarolo; Pietro Veglianese; Silvia De Biasi; Elena Fontana; Laura Vitellaro Zuccarello; Christa J. Maynard; Nico P. Dantuma; Caterina Bendotti

In familial and sporadic amyotrophic lateral sclerosis (ALS) and in rodent models of the disease, alterations in the ubiquitin-proteasome system (UPS) may be responsible for the accumulation of potentially harmful ubiquitinated proteins, leading to motor neuron death. In the spinal cord of transgenic mice expressing the familial ALS superoxide dismutase 1 (SOD1) gene mutation G93A (SOD1G93A), we found a decrease in constitutive proteasome subunits during disease progression, as assessed by real-time PCR and immunohistochemistry. In parallel, an increased immunoproteasome expression was observed, which correlated with a local inflammatory response due to glial activation. These findings support the existence of proteasome modifications in ALS vulnerable tissues. To functionally investigate the UPS in ALS motor neurons in vivo, we crossed SOD1G93A mice with transgenic mice that express a fluorescently tagged reporter substrate of the UPS. In double-transgenic Ub(G76V)-GFP /SOD1G93A mice an increase in Ub(G76V)-GFP reporter, indicative of UPS impairment, was detectable in a few spinal motor neurons and not in reactive astrocytes or microglia, at symptomatic stage but not before symptoms onset. The levels of reporter transcript were unaltered, suggesting that the accumulation of Ub(G76V)-GFP was due to deficient reporter degradation. In some motor neurons the increase of Ub(G76V)-GFP was accompanied by the accumulation of ubiquitin and phosphorylated neurofilaments, both markers of ALS pathology. These data suggest that UPS impairment occurs in motor neurons of mutant SOD1-linked ALS mice and may play a role in the disease progression.


Journal of Neuroimmunology | 2009

Immune system alterations in sporadic amyotrophic lateral sclerosis patients suggest an ongoing neuroinflammatory process

Stefania Mantovani; Silvia Garbelli; Alessandra Pasini; Dario Alimonti; Cesare Perotti; Mario Melazzini; Caterina Bendotti; Gabriele Mora

In this work we show that patients with sporadic amyotrophic lateral sclerosis exhibit immunological alterations in their blood, with respect to healthy controls, such as: i) increased levels of CD4+ cells and decreased levels of CD8+ T lymphocytes, the latter due to the reduced expression of the anti-apoptotic molecule Bcl-2; ii) significantly reduced CD4+CD25+ regulatory T (Treg) cells and monocytes (CD14+) levels in patients at a less severe stage of disease, suggesting their early recruitment towards the CNS area of primary neurodegeneration; iii) reduced expression of HLA-DR and CCR2 expression, as markers of activation, in monocytes. Since resident microglia partially derives from circulating activated monocytes and Treg cells are known to interact with the local microglia, this study strengthens the hypothesis of an involvement of the adaptive immune system associated with a neuroinflammatory process in the pathobiology of ALS.


Progress in Neurobiology | 2012

Dysfunction of constitutive and inducible ubiquitin-proteasome system in amyotrophic lateral sclerosis: Implication for protein aggregation and immune response

Caterina Bendotti; Marianna Marino; Cristina Cheroni; Elena Fontana; Valeria Crippa; Angelo Poletti; Silvia De Biasi

The ubiquitin-proteasome system (UPS) is the major intracellular proteolytic mechanism controlling the degradation of misfolded/abnormal proteins. A common hallmark in amyotrophic lateral sclerosis (ALS) and in other neurodegenerative disorders is the accumulation of misfolded/abnormal proteins into the damaged neurons, leading to the formation of cellular inclusions that are mostly ubiquitin-positive. Although proteolysis is a complex mechanism requiring the participation of different pathways, the abundant accumulation of ubiquitinated proteins strongly suggests an important contribution of UPS to these neuropathological features. The use of cellular and animal models of ALS, particularly those expressing mutant SOD1, the gene mutation most represented in familiar ALS, has provided significant evidence for a role of UPS in protein inclusions formation and motor neuron death. This review will specifically discuss this piece of evidence and provide suggestions of potential strategies for therapeutic intervention. We will also discuss the finding that, unlike the constitutive proteasome subunits, the inducible subunits are overexpressed early during disease progression in SOD1 mice models of ALS. These subunits form the immunoproteasome and generate peptides for the major histocompatibility complex class I molecules, suggesting a role of this system in the immune responses associated with the pathological features of ALS. Since recent discoveries indicate that innate and adaptive immunity may influence the disease process, in this review we will also provide evidence of a possible connection between immune-inflammatory reactions and UPS function, in the attempt to better understand the etiopathology of ALS and to identify appropriate targets for novel treatment strategies of this devastating disease.


Journal of Neuroscience Research | 2006

Glutamate AMPA receptors change in motor neurons of SOD1G93A transgenic mice and their inhibition by a noncompetitive antagonist ameliorates the progression of amytrophic lateral sclerosis-like disease

Massimo Tortarolo; Giuliano Grignaschi; Novella Calvaresi; Eleonora Zennaro; Gabriella Spaltro; Milena Colovic; Claudia Fracasso; Giovanna Guiso; Bernd Elger; Herbert Schneider; Bernd Seilheimer; Silvio Caccia; Caterina Bendotti

Amyotrophic lateral sclerosis (ALS) is a fatal neurological disorder involving the selective degeneration of motor neurons. In a small proportion of patients, ALS is caused by mutations in copper/zinc superoxide dismutase (SOD1), and mice overexpressing SOD1G93A mutant develop a syndrome that closely resembles the human disease. Excitotoxicity mediated by glutamate AMPA receptors has been suggested to be implicated in the selective susceptibility of motor neurons occurring in ALS. In SOD1G93A mice, we found that levels of GluR2 AMPA subunit, which plays a pivotal role in the maintenance of calcium impermeability of AMPA receptors, are decreased in spinal motor neurons before symptom onset in concomitance with a modest increase of GluR3 expression, a calcium‐permeable AMPA subunit. This effect can result in a higher number of calcium‐permeable AMPA receptors on motor neurons of SOD1G93A mice, predisposing these cells to be injured by AMPA‐mediated glutamate firing. In support of this, we showed that treatment with a new noncompetitive AMPA antagonist, ZK 187638, partially protected motor neurons, improved motor function, and prolonged the survival of SOD1G93A mice.

Collaboration


Dive into the Caterina Bendotti's collaboration.

Top Co-Authors

Avatar

Massimo Tortarolo

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar

Cristina Cheroni

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giovanni Nardo

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marianna Marino

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge