Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Caterina Bertini is active.

Publication


Featured researches published by Caterina Bertini.


Restorative Neurology and Neuroscience | 2015

a-tDCS on the ipsilesional parietal cortex boosts the effects of prism adaptation treatment in neglect

Elisabetta Làdavas; Sara Giulietti; Alessio Avenanti; Caterina Bertini; Eleonora Lorenzini; Cristina Quinquinio; Andrea Serino

BACKGROUND AND OBJECTIVEnThe aim of the study is to compare the effects of multiple sessions of cathodal (c-tDCS) or anodal tDCS (a-tDCS) in modulating the beneficial effects of prism adaptation (PA) treatment in neglect patients.nnnMETHODSn30 neglect patients were submitted to 10 daily sessions of PA treatment. Patients were pseudo-randomly divided into 3 groups. In the c-tDCS-group, each PA session was coupled with 20 minutes of cathodal stimulation of the left, intact PPC; in the a-tDCS-group, anodal stimulation was applied to PPC of the damaged hemisphere; in the Sham group, sham stimulation was applied. Neglect was evaluated before and after treatment with the Behavioral Inattention Test.nnnRESULTSnCombined tDCS-PA treatment induced stronger neglect improvement in the a-tDCSgroup as compared to the Sham group. No improvement was found in the c-tDCS group, with respect to that normally induced by PA and found in the Sham group.nnnCONCLUSIONSnc-tDCS abolished neglect amelioration after PA, possibly because stimulation affected the sensorimotor network controlling prism adaptation. Instead, a-tDCS PPC boosted neglect amelioration after PA probably thanks to increased excitability of residual tissue in the lesioned hemisphere, which in turn might reduce dysfunctional over-excitability of the intact hemisphere.


Journal of Cognitive Neuroscience | 2014

Unseen fearful faces influence face encoding: Evidence from erps in hemianopic patients

Roberto Cecere; Caterina Bertini; Martin E. Maier; Elisabetta L davas

Visual threat-related signals are not only processed via a cortical geniculo-striatal pathway to the amygdala but also via a subcortical colliculo-pulvinar-amygdala pathway, which presumably mediates implicit processing of fearful stimuli. Indeed, hemianopic patients with unilateral damage to the geniculo-striatal pathway have been shown to respond faster to seen happy faces in their intact visual field when unseen fearful faces were concurrently presented in their blind field [Bertini, C., Cecere, R., & Làdavas, E. I am blind, but I “see” fear. Cortex, 49, 985–993, 2013]. This behavioral facilitation in the presence of unseen fear might reflect enhanced processing of consciously perceived faces because of early activation of the subcortical pathway for implicit fear perception, which possibly leads to a modulation of cortical activity. To test this hypothesis, we examined ERPs elicited by fearful and happy faces presented to the intact visual field of right and left hemianopic patients, whereas fearful, happy, or neutral faces were concurrently presented in their blind field. Results showed that the amplitude of the N170 elicited by seen happy faces was selectively increased when an unseen fearful face was concurrently presented in the blind field of right hemianopic patients. These results suggest that when the geniculo-striate visual pathway is lesioned, the rapid and implicit processing of threat signals can enhance facial encoding. Notably, the N170 modulation was only observed in left-lesioned patients, favoring the hypothesis that implicit subcortical processing of fearful signals can influence face encoding only when the right hemisphere is intact.


Frontiers in Behavioral Neuroscience | 2015

Visual rehabilitation: visual scanning, multisensory stimulation and vision restoration trainings.

Neil M. Dundon; Caterina Bertini; Elisabetta Làdavas; Bernhard A. Sabel; Carolin Gall

Neuropsychological training methods of visual rehabilitation for homonymous vision loss caused by postchiasmatic damage fall into two fundamental paradigms: “compensation” and “restoration”. Existing methods can be classified into three groups: Visual Scanning Training (VST), Audio-Visual Scanning Training (AViST) and Vision Restoration Training (VRT). VST and AViST aim at compensating vision loss by training eye scanning movements, whereas VRT aims at improving lost vision by activating residual visual functions by training light detection and discrimination of visual stimuli. This review discusses the rationale underlying these paradigms and summarizes the available evidence with respect to treatment efficacy. The issues raised in our review should help guide clinical care and stimulate new ideas for future research uncovering the underlying neural correlates of the different treatment paradigms. We propose that both local “within-system” interactions (i.e., relying on plasticity within peri-lesional spared tissue) and changes in more global “between-system” networks (i.e., recruiting alternative visual pathways) contribute to both vision restoration and compensatory rehabilitation, which ultimately have implications for the rehabilitation of cognitive functions.


Neuropsychologia | 2013

Crossmodal enhancement of visual orientation discrimination by looming sounds requires functional activation of primary visual areas: A case study

Roberto Cecere; Vincenzo Romei; Caterina Bertini; Elisabetta Làdavas

Approaching or looming sounds are salient, potentially threatening stimuli with particular impact on visual processing. The early crossmodal effects by looming sounds (Romei, Murray, Cappe, & Thut, 2009) and their selective impact on visual orientation discrimination (Leo, Romei, Freeman, Ladavas, & Driver, 2011) suggest that these multisensory interactions may take place already within low-level visual cortices. To investigate this hypothesis, we tested a patient (SDV) with bilateral occipital lesion and spared residual portions of V1/V2. Accordingly, SDV׳s visual perimetry revealed blindness of the central visual field with some residual peripheral vision. In two experiments we tested for the influence of looming vs. receding and stationary sounds on SDV׳s line orientation discrimination (orientation discrimination experiment) and visual detection abilities (detection experiment) in the preserved or blind portions of the visual field, corresponding to spared and lesioned areas of V1, respectively. In the visual orientation discrimination experiment we found that SDV visual orientation sensitivity significantly improved for visual targets paired with looming sounds but only for lines presented in the partially preserved visual field. In the visual detection experiment, where SDV was required to simply detect the same stimuli presented in the orientation discrimination experiment, a generalised sound-induced visual improvement both in the intact and in blind portion of the visual field was observed. These results provide direct evidence that early visual areas are critically involved in crossmodal modulation of visual orientation sensitivity by looming sounds. Thus, a lesion in V1 prevents the enhancement of visual orientation sensitivity. In contrast, the same lesion does not prevent the visual detection enhancement by a sound, probably due to alternative visual pathways (e.g. retino-colliculo-extrastriate) which are usually spared in these patients and able to mediate the crossmodal enhancement of basic visual abilities such as detection.


Biological Psychology | 2016

The effect of alexithymia on early visual processing of emotional body postures.

Khatereh Borhani; Sara Borgomaneri; Elisabetta Làdavas; Caterina Bertini

Body postures convey emotion and motion-related information useful in social interactions. Early visual encoding of body postures, reflected by the N190 component, is modulated both by motion (i.e., postures implying motion elicit greater N190 amplitudes than static postures) and by emotion-related content (i.e., fearful postures elicit the largest N190 amplitude). At a later stage, there is a fear-related increase in attention, reflected by an early posterior negativity (EPN) (Borhani et al., 2015). Here, we tested whether difficulties in emotional processing (i.e., alexithymia) affect early and late visual processing of body postures. Low alexithymic participants showed emotional modulation of the N190, with fearful postures specifically enhancing N190 amplitude. In contrast, high alexithymic participants showed no emotional modulation of the N190. Both groups showed preserved encoding of the motion content. At a later stage, a fear-related modulation of the EPN was found for both groups, suggesting that selective attention to salient stimuli is the same in both low and high alexithymia.


Social Cognitive and Affective Neuroscience | 2015

Emotional and movement-related body postures modulate visual processing

Khatereh Borhani; Elisabetta Làdavas; Martin E. Maier; Alessio Avenanti; Caterina Bertini

Human body postures convey useful information for understanding others emotions and intentions. To investigate at which stage of visual processing emotional and movement-related information conveyed by bodies is discriminated, we examined event-related potentials elicited by laterally presented images of bodies with static postures and implied-motion body images with neutral, fearful or happy expressions. At the early stage of visual structural encoding (N190), we found a difference in the sensitivity of the two hemispheres to observed body postures. Specifically, the right hemisphere showed a N190 modulation both for the motion content (i.e. all the observed postures implying body movements elicited greater N190 amplitudes compared with static postures) and for the emotional content (i.e. fearful postures elicited the largest N190 amplitude), while the left hemisphere showed a modulation only for the motion content. In contrast, at a later stage of perceptual representation, reflecting selective attention to salient stimuli, an increased early posterior negativity was observed for fearful stimuli in both hemispheres, suggesting an enhanced processing of motivationally relevant stimuli. The observed modulations, both at the early stage of structural encoding and at the later processing stage, suggest the existence of a specialized perceptual mechanism tuned to emotion- and action-related information conveyed by human body postures.


Restorative Neurology and Neuroscience | 2015

Multisensory stimulation in hemianopic patients boosts orienting responses to the hemianopic field and reduces attentional resources to the intact field

Neil M. Dundon; Elisabetta Làdavas; Martin E. Maier; Caterina Bertini

PURPOSEnLateralised lesions can disrupt inhibitory cross-callosal fibres which maintain interhemispheric equilibrium in attention networks, with a consequent attentional bias towards the ipsilesional field. Some evidence of this imbalance has also been found in hemianopic patients (Tant et al., 2002). The aim of the present study was to reduce this attentional bias in hemianopic patients by using multisensory stimulation capable of activating subcortical structures responsible for orienting attention, such as the superior colliculus.nnnMETHODSnEight hemianopic patients underwent a course of multisensory stimulation treatment for two weeks and their behavioural and electrophysiological performance was tested at three time intervals: baseline 1 (before treatment), control baseline 2 (two weeks after baseline 1 and immediately before treatment as a control for practice effects) and finally after treatment.nnnRESULTSnThe results show improvements on various clinical measures, on orienting responses in the hemianopic field, and a reduction of electrophysiological activity (P3 amplitude) in response to stimuli presented in the intact visual field.nnnCONCLUSIONSnThese results suggest that the primary visual deficit in hemianopic patients might be accompanied by an ipsilesional attentional bias which might be reduced by multisensory stimulation.


Frontiers in Systems Neuroscience | 2016

Compensatory Recovery after Multisensory Stimulation in Hemianopic Patients: Behavioral and Neurophysiological Components.

Paolo A. Grasso; Elisabetta Làdavas; Caterina Bertini

Lateralized post-chiasmatic lesions of the primary visual pathway result in loss of visual perception in the field retinotopically corresponding to the damaged cortical area. However, patients with visual field defects have shown enhanced detection and localization of multisensory audio-visual pairs presented in the blind field. This preserved multisensory integrative ability (i.e., crossmodal blindsight) seems to be subserved by the spared retino-colliculo-dorsal pathway. According to this view, audio-visual integrative mechanisms could be used to increase the functionality of the spared circuit and, as a consequence, might represent an important tool for the rehabilitation of visual field defects. The present study tested this hypothesis, investigating whether exposure to systematic multisensory audio-visual stimulation could induce long-lasting improvements in the visual performance of patients with visual field defects. A group of 10 patients with chronic visual field defects were exposed to audio-visual training for 4 h daily, over a period of 2 weeks. Behavioral, oculomotor and electroencephalography (EEG) measures were recorded during several visual tasks before and after audio-visual training. After audio-visual training, improvements in visual search abilities, visual detection, self-perceived disability in daily life activities and oculomotor parameters were found, suggesting the implementation of more effective visual exploration strategies. At the electrophysiological level, after training, patients showed a significant reduction of the P3 amplitude in response to stimuli presented in the intact field, reflecting a reduction in attentional resources allocated to the intact field, which might co-occur with a shift of spatial attention towards the blind field. More interestingly, both the behavioral improvements and the electrophysiological changes observed after training were found to be stable at a follow-up session (on average, 8 months after training), suggesting long-term effects of multisensory audio-visual training. These long-lasting effects seem to be subserved by the activation of the spared retino-colliculo-dorsal pathway, which promotes orienting responses towards the blind field, able to both compensate for the visual field loss and concurrently attenuate visual attention towards the intact field. These results add to previous findings the knowledge that audio-visual multisensory stimulation promote long-term plastic changes in hemianopics, resulting in stable and long-lasting ameliorations in behavioral and electrophysiological measures.


European Journal of Neuroscience | 2016

Audio-visual multisensory training enhances visual processing of motion stimuli in healthy participants: an electrophysiological study

Paolo A. Grasso; Mariagrazia Benassi; Elisabetta Làdavas; Caterina Bertini

Evidence from electrophysiological and imaging studies suggests that audio‐visual (AV) stimuli presented in spatial coincidence enhance activity in the subcortical colliculo‐dorsal extrastriate pathway. To test whether repetitive AV stimulation might specifically activate this neural circuit underlying multisensory integrative processes, electroencephalographic data were recorded before and after 2 h of AV training, during the execution of two lateralized visual tasks: a motion discrimination task, relying on activity in the colliculo‐dorsal MT pathway, and an orientation discrimination task, relying on activity in the striate and early ventral extrastriate cortices. During training, participants were asked to detect and perform a saccade towards AV stimuli that were disproportionally allocated to one hemifield (the trained hemifield). Half of the participants underwent a training in which AV stimuli were presented in spatial coincidence, while the remaining half underwent a training in which AV stimuli were presented in spatial disparity (32°). Participants who received AV training with stimuli in spatial coincidence had a post‐training enhancement of the anterior N1 component in the motion discrimination task, but only in response to stimuli presented in the trained hemifield. However, no effect was found in the orientation discrimination task. In contrast, participants who received AV training with stimuli in spatial disparity showed no effects on either task. The observed N1 enhancement might reflect enhanced discrimination for motion stimuli, probably due to increased activity in the colliculo‐dorsal MT pathway induced by multisensory training.


PLOS ONE | 2015

The Enfacement Illusion Is Not Affected by Negative Facial Expressions

Brianna Beck; Flavia Cardini; Elisabetta Làdavas; Caterina Bertini

Enfacement is an illusion wherein synchronous visual and tactile inputs update the mental representation of one’s own face to assimilate another person’s face. Emotional facial expressions, serving as communicative signals, may influence enfacement by increasing the observer’s motivation to understand the mental state of the expresser. Fearful expressions, in particular, might increase enfacement because they are valuable for adaptive behavior and more strongly represented in somatosensory cortex than other emotions. In the present study, a face was seen being touched at the same time as the participant’s own face. This face was either neutral, fearful, or angry. Anger was chosen as an emotional control condition for fear because it is similarly negative but induces less somatosensory resonance, and requires additional knowledge (i.e., contextual information and social contingencies) to effectively guide behavior. We hypothesized that seeing a fearful face (but not an angry one) would increase enfacement because of greater somatosensory resonance. Surprisingly, neither fearful nor angry expressions modulated the degree of enfacement relative to neutral expressions. Synchronous interpersonal visuo-tactile stimulation led to assimilation of the other’s face, but this assimilation was not modulated by facial expression processing. This finding suggests that dynamic, multisensory processes of self-face identification operate independently of facial expression processing.

Collaboration


Dive into the Caterina Bertini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin E. Maier

Catholic University of Eichstätt-Ingolstadt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrick Haggard

University College London

View shared research outputs
Researchain Logo
Decentralizing Knowledge