Caterina Ciacci
University of Urbino
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Caterina Ciacci.
Marine Environmental Research | 2012
Laura Canesi; Caterina Ciacci; Rita Fabbri; Antonio Marcomini; Giulio Pojana; Gabriella Gallo
Due to the continuous development and production of manufactured nanomaterials or nanoparticles (NPs), their uptake and effects in the aquatic biota represent a major concern. Estuarine and coastal environments are expected to represent the ultimate sink for NPs, where their chemical behavior (aggregation/agglomeration) and consequent fate may be critical in determining the biological impact. Bivalve mollusks are abundant from freshwater to marine ecosystems, where they are widely utilized in biomonitoring of environmental perturbations. As suspension-feeders, they have highly developed processes for cellular internalization of nano- and micro-scale particles (endo- and phagocytosis), integral to key physiological functions such as intra-cellular digestion and cellular immunity. Here we will summarise available information on the effects of different types of NPs in different bivalve species, in particular Mytilus spp. Data on the effects and modes of action of different NPs on mussel hemocytes in vitro demonstrate that cell-mediated immunity represents a significant target for NPs. Moreover, in vivo exposure to NPs indicates that, due to the physiological mechanisms involved in the feeding process, NP agglomerates/aggregates taken up by the gills are directed to the digestive gland, where intra-cellular uptake of nanosized materials induces lysosomal perturbations and oxidative stress. Overall, bivalves represent a particularly suitable model for investigating the effects and mechanisms of action underlying the potential toxicity of NPs in marine invertebrates.
Aquatic Toxicology | 2010
Laura Canesi; Caterina Ciacci; Davide Vallotto; Gabriella Gallo; Antonio Marcomini; Giulio Pojana
As the nanotechnology industries increase production, nanoscale products will enter the aquatic environment, posing a possible threat to aquatic organisms. Suspension-feeding invertebrates may represent a unique target group for nanoparticle (NP) ecotoxicity, since they have highly developed processes for the cellular internalisation of nano- and microscale particles (endocytosis and phagocytosis), which are integral to key physiological functions such as intracellular digestion and cellular immunity. In the marine bivalve Mytilus, short-term exposure to nanosized carbon black (NCB) was shown to significantly affect immune parameters of immune cells, the hemocytes, in vitro. In this work, we further investigated the effects of other types of commercial NPs (C60 fullerene, TiO(2) and SiO(2) at 1, 5, 10 microg/ml) on Mytilus hemocytes. Characterization of NP suspensions in artificial sea water (ASW) was performed, indicating the formation of agglomerates of different sizes for different types of NPs. None of the NP tested significantly affected lysosomal membrane stability, indicating the lack of a major toxic effect. However, all NP suspensions induced a concentration-dependent lysozyme release, extracellular oxyradical and nitric oxide (NO) production, to a different extent and with different time courses depending on the concentration and the NP type. The inflammatory effects of NPs were mediated by rapid activation of the stress-activated p38 MAPK. The results further support the hypothesis that in bivalves the immune system represents a significant target for NPs.
PLOS ONE | 2012
Caterina Ciacci; Barbara Canonico; Dagmar Bilaniĉovă; Rita Fabbri; Katia Cortese; Gabriella Gallo; Antonio Marcomini; Giulio Pojana; Laura Canesi
The potential toxicity of engineered nanoparticles (NPs) for humans and the environment represents an emerging issue. Since the aquatic environment represents the ultimate sink for NP deposition, the development of suitable assays is needed to evaluate the potential impact of NPs on aquatic biota. The immune system is a sensitive target for NPs, and conservation of innate immunity represents an useful basis for studying common biological responses to NPs. Suspension-feeding invertebrates, such as bivalves, are particularly at risk to NP exposure, since they have extremely developed systems for uptake of nano and microscale particles integral to intracellular digestion and cellular immunity. Evaluation of the effects of NPs on functional parameters of bivalve immunocytes, the hemocytes, may help understanding the major toxic mechanisms and modes of actions that could be relevant for different NP types in aquatic organisms.In this work, a battery of assays was applied to the hemocytes of the marine bivalve Mytilus galloprovincialis to compare the in vitro effects of different n-oxides (n-TiO2, n-SiO2, n-ZnO, n-CeO2) chosen on the basis of their commercial and environmental relevance. Physico-chemical characterization of both primary particles and NP suspensions in artificial sea water-ASW was performed. Hemocyte lysosomal and mitochondrial parameters, oxyradical and nitric oxide production, phagocytic activity, as well as NP uptake, were evaluated. The results show that different n-oxides rapidly elicited differential responses hemocytes in relation to their chemical properties, concentration, behavior in sea water, and interactions with subcellular compartments. These represent the most extensive data so far available on the effects of NPs in the cells of aquatic organisms. The results indicate that Mytilus hemocytes can be utilized as a suitable model for screening the potential effects of NPs in the cells of aquatic invertebrates, and may provide a basis for future experimental work for designing environmentally safer nanomaterials.
Environment International | 2008
Laura Canesi; Caterina Ciacci; Michele Betti; Rita Fabbri; Barbara Canonico; Andrea Fantinati; Antonio Marcomini; Giulio Pojana
The potential for human and ecological toxicity associated with nanomaterials is a growing area of investigation. In mammalian cells, nanoparticles have been shown to induce inflammation and oxidative stress, and changes in cell signalling and gene expression. As the nanotechnology industries increase production, nanoscale products and by products will enter the aquatic environment, posing a possible threat to aquatic organisms. In particular, filter-feeding organisms may represent a unique target group for nanoparticle toxicology. In this work, the effects of commercial nanosized carbon black (NCB) on the immune cells, the hemocytes, of the bivalve mollusc Mytilus, and the possible mechanisms involved were investigated. The results demonstrate that NCB (1, 5, and 10 microg/ml), did not induce significant lysosomal membrane destabilization, as evaluated by the NR retention time assay. A concentration-dependent uptake of NCB by hemocytes was observed and it was associated by a rapid increase in extracellular lysozyme release, extracellular oxyradical production, and nitric oxide (NO) release. Moreover, at the highest concentration tested, NCB induced significant changes in mitochondrial parameters (decrease mitochondrial mass/number and membrane potential), as evaluated by flow cytometry. The effects of NCB were mediated by rapid activation of the stress-activated MAPKs (Mitogen Activated Protein Kinases) p38 and JNKs, that play a key role in immune and inflammatory responses. The results demonstrate that in mussel hemocytes like in mammalian cells NCB exposure can induce inflammatory processes, and indicate that bivalve immunocytes can represent a suitable model for investigating the effects and modes of action of nanoparticles in the cells of aquatic invertebrates.
Developmental and Comparative Immunology | 2002
Laura Canesi; Michele Betti; Caterina Ciacci; Alfonso Scarpato; Barbara Citterio; Carla Pruzzo; Gabriella Gallo
In this work the mechanisms of transduction triggered in Mytilus galloprovincialis hemocytes by bacterial challenge were investigated in an in vitro model of infection of hemocyte monolayers with Escherichia coli. Western blot analyses of hemocyte extracts with phospho-specific anti-MAPK (Mitogen Activated Protein Kinase) antibodies indicate that E. coli induced a time dependent activation of different classes of MAPKs, mainly of the stress-activated p38 MAPK. P38 activation was confirmed by the use of the selective kinase inhibitor SB203580. Moreover, hemocyte pretreatment with SB203580 significantly reduced bacterial killing, whereas PD98059, an inhibitor of extracellularly regulated kinase (ERK) activation, was ineffective. Interestingly, the PI3-kinase (phosphatidylinositol-3-OH-kinase) inhibitor, Wortmannin, reduced both p38 activation and bacterial killing, indicating a critical role also for this lipid kinase in the hemocyte immune response.
Aquatic Toxicology | 2013
Cristina Barmo; Caterina Ciacci; Barbara Canonico; Rita Fabbri; Katia Cortese; Teresa Balbi; Antonio Marcomini; Giulio Pojana; Gabriella Gallo; Laura Canesi
Due to the increasing production of nanoparticles (NPs) and their potential release in the aquatic environment, evaluation of their biological impact on aquatic organisms represents a major concern. Suspension feeding invertebrates, in particular bivalve mollusks, may play a role in NP biotransformation and transfer through food webs and may represent a significant target for NP toxicity. In this work, the in vivo effects of titanium dioxide (n-TiO2), one of the most widespread NPs in use, were investigated in the bivalve Mytilus galloprovincialis, largely utilised as a sentinel for marine contamination. Mussels were exposed for 96h to different concentrations of n-TiO2 suspensions (1, 10 and 100μgL(-1)) and multiple responses were evaluated in the digestive gland and immune cells, the haemocytes. In the digestive gland, n-TiO2 affected lysosomal and oxidative stress biomarkers and decreased transcription of antioxidant and immune-related genes. In the haemocytes, n-TiO2 decreased lysosomal membrane stability-LMS and phagocytosis, increased oxyradical production and transcription of antimicrobial peptides; moreover, pre-apoptotic processes were observed. The effects of n-TiO2 on digestive gland and haemocytes were distinct, also depending on the endpoint and on nominal NP concentrations, with many significant responses elicited by the lowest concentrations tested. The results show that n-TiO2, at concentrations close to predicted environmental levels, significantly affected different functional and molecular parameters of mussel digestive gland and immune cells. In particular, the observed changes in immune parameters that represent significant biomarkers of exposure at the organism level suggest that exposure to n-TiO2 may pose a serious risk to mussel health.
Aquatic Toxicology | 2014
Laura Canesi; Giada Frenzilli; Teresa Balbi; Margherita Bernardeschi; Caterina Ciacci; Simonetta Corsolini; Camilla Della Torre; Rita Fabbri; Claudia Faleri; Silvano Focardi; Patrizia Guidi; Anton Kočan; Antonio Marcomini; Michela Mariottini; Marco Nigro; Karla Pozo-Gallardo; Lucia Rocco; Arianna Smerilli; Ilaria Corsi
Despite the growing concern over the potential biological impact of nanoparticles (NPs) in the aquatic environment, little is known about their interactions with other pollutants. The bivalve Mytilus sp, largely utilized as a sentinel for marine contamination, has been shown to represent a significant target for different types of NP, including n-TiO2, one of the most widespread in use. In this work, the possible interactive effects of n-TiO2 and 2,3,7,8-TCDD, chosen as models of NP and organic contaminant, respectively, were investigated in Mytilus galloprovincialis. In vitro experiments with n-TiO2 and TCDD, alone and in combination, were carried out in different conditions (concentrations and times of exposure), depending on the target (hemocytes, gill cells and biopsies) and the endpoint measured. Mussels were also exposed in vivo to n-TiO2 (100 μg L(-1)) or to TCDD (0.25 μg L(-1)), alone and in combination, for 96 h. A wide range of biomarkers, from molecular to tissue level, were measured: lysosomal membrane stability and phagocytosis in hemocytes, ATP-binding cassette efflux transporters in gills (gene transcription and efflux activity), several biomarkers of genotoxicity in gill and digestive cells (DNA damage, random amplified polymorphic DNA-RAPD changes), lysosomal biomarkers and transcription of selected genes in the digestive gland. The results demonstrate that n-TiO2 and TCDD can exert synergistic or antagonistic effects, depending on experimental condition, cell/tissue and type of measured response. Some of these interactions may result from a significant increase in TCDD accumulation in whole mussel organisms in the presence of n-TiO2, indicating a Trojan horse effect. The results represent the most extensive data obtained so far on the sub-lethal effects of NPs and organic contaminants in aquatic organisms. Moreover, these data extend the knowledge on the molecular and cellular targets of NPs in bivalves.
Aquatic Toxicology | 2012
Caterina Ciacci; Cristina Barmo; Gabriella Gallo; Maria Maisano; Tiziana Cappello; Alessia D’Agata; Claudio Leonzio; Angela Mauceri; Salvatore Fasulo; Laura Canesi
Hexavalent chromium Cr(VI) is an important contaminant released from both domestic and industrial effluents, and represents the predominant chemical form of the metal in aquatic ecosystems. In the marine bivalve Mytilus galloprovincialis exposure to non-toxic, environmentally relevant concentrations of Cr(VI) was shown to modulate functional parameters and gene expression in both the digestive gland and hemocytes. In this work, the effects of exposure to Cr(VI) (0.1-1-10 μg L(-1) animal(-1) for 96 h) in mussel gills were investigated. Gill morphology and immunolocalization of GSH-transferase (GST), of components involved in cholinergic (AChE and ChAT), adrenergic (TH) and serotoninergic (5-HT(3) receptor) systems, regulating gill motility, were evaluated. Total glutathione content, activities of GSH-related enzymes (glutathione reductase - GSR, GST), of catalase, and of key glycolytic enzymes (phosphofructokinase - PFK and pyruvate kinase - PK) were determined. Moreover, mRNA expression of selected Mytilus genes (GST-π, metallothionein isoforms MT10 and MT20, HSP70 and 5-HT receptor) was assessed by RT-q-PCR. Cr(VI) exposure induced progressive changes in gill morphology and in immunoreactivity to components involved in neurotransmission that were particularly evident at the highest concentration tested, and associated with large metal accumulation. Cr(VI) increased the activities of GST and GSR, and total glutathione content to a different extent at different metal concentrations, this suggesting Cr(VI) detoxication/reduction at the site of metal entry. Cr(VI) exposure also increased the activity of glycolytic enzymes, indicating modulation of carbohydrate metabolism. Significant changes in transcription of different genes were observed. In particular, the mRNA level for the 5-HTR was increased, whereas both decreases and increases were observed for GST-π, MT10, MT20 and HSP70 mRNAs, showing sex- and concentration-related differences. The results demonstrate that Cr(VI) significantly affected functional and molecular parameters in mussel gills, and indicate that this tissue represents the major target of exposure to environmentally relevant concentrations of the metal.
Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology | 1998
Laura Canesi; Caterina Ciacci; G Piccoli; V Stocchi; Aldo Viarengo; Gabriella Gallo
Hexokinase (E.C. 2.7.1.1), the enzyme responsible for glucose phosphorylation to G-6P, is inactivated by SH reagents and oxyradicals, and its inhibition has been involved in heavy metal toxicity in mammalian systems. In this work, the possibility that hexokinase activity could be affected by both heavy metal binding and oxidative stress conditions also in mussel tissues (Mytilus galloprovincialis Lam.) was investigated. The results obtained in vitro demonstrate that heavy metals inhibited digestive gland hexokinase (with Cd2+ > Cu2+ > Hg2+ > Zn2+ > Pb2+) and suggest a role for GSH in the protection against the heavy metal effects. Hexokinase activity was also reduced by addition of iron/ascorbate, indicating a susceptibility of the enzyme to metal-mediated oxyradical production. The effects of Cu2+ treatment (3 days, 40 micrograms l-1 per animal) on hexokinase activity and on the GSH/GSSG status were then evaluated in mussels exposed to a cycle of air exposure/reimmersion. In Cu-exposed mussels, a significant decrease in hexokinase activity and a parallel reduction in tissue GSH levels were observed, suggesting that the two effects of metal treatment could be related; however, hexokinase activity progressively recovered during air exposure and reimmersion, whereas the level of GSH showed a further decrease during air exposure followed by recovery after reimmersion. The in vitro results therefore indicate that mussel digestive gland hexokinase is susceptible to inactivation by heavy metal binding and suggest a role for GSH in the protection against the effects of heavy metals. The effects of copper were confirmed by the results obtained in vivo. The possible relationship between hexokinase activity and the level of GSH in the digestive gland of control and Cu-exposed mussels during air exposure and reimmersion are discussed, taking into account the balance between pro-oxidant and antioxidant processes at different stages of exposure.
Molecular and Cellular Endocrinology | 2007
Laura Canesi; Cristina Borghi; Caterina Ciacci; Rita Fabbri; Laura Vergani; Gabriella Gallo
Bisphenol-A (BPA) is a well-known xenoestrogen in mammalian systems that can affect reproduction also in aquatic organisms. In this work the possible effects of BPA were investigated in the hepatopancreas of the bivalve mollusc Mytilus galloprovincialis: mussels were injected with different amounts of BPA (3-60ng/g dw tissue) and tissues sampled at 24h post-injection. Expression of different Mytilus genes was evaluated by RT-Q-PCR: BPA exposure increased the expression of MeER2 and induced downregulation of antioxidant genes, catalase and metallothioneins. Moreover, BPA induced changes in activity of catalase, GSH transferase (GST) and GSSG reductase (GSR), and in total glutathione content. A decrease in lysosomal membrane stability and increased neutral lipid accumulation were also observed. The results were compared with those obtained with similar concentrations of 17beta-estradiol. These data demonstrate that BPA can alter gene expression, activities of enzymes involved in redox balance, and lysosomal function in molluscan hepatopancreas, a tissue involved in the control of metabolism and gamete maturation. Overall, these data indicate that BPA, at environmentally relevant concentrations, can have both estrogen-like and distinct effects in invertebrates like in vertebrates.