Caterina Constantinou
University of Patras
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Caterina Constantinou.
International Journal of Molecular Medicine | 2010
Caterina Constantinou; Cibely Cristine Fontes de Oliveira; Dionyssios Mintzopoulos; Sílvia Busquets; Jianxin He; Meenu Kesarwani; Michael Mindrinos; Laurence G. Rahme; Josep M. Argilés; A. Aria Tzika
Cancer patients commonly suffer from cachexia, a syndrome in which tumors induce metabolic changes in the host that lead to massive loss in skeletal muscle mass. Using a preclinical mouse model of cancer cachexia, we tested the hypothesis that tumor inoculation causes a reduction in ATP synthesis and genome-wide aberrant expression in skeletal muscle. Mice implanted with Lewis lung carcinomas were examined by in vivo 31P nuclear magnetic resonance (NMR). We examined ATP synthesis rate and the expression of genes that play key-regulatory roles in skeletal muscle metabolism. Our in vivo NMR results showed reduced ATP synthesis rate in tumor-bearing (TB) mice relative to control (C) mice, and were cross-validated with whole genome transcriptome data showing atypical expression levels of skeletal muscle regulatory genes such as peroxisomal proliferator activator receptor γ coactivator 1 ß (PGC-1ß), a major regulator of mitochondrial biogenesis and, mitochondrial uncoupling protein 3 (UCP3). Aberrant pattern of gene expression was also associated with genes involved in inflammation and immune response, protein and lipid catabolism, mitochondrial biogenesis and uncoupling, and inadequate oxidative stress defenses, and these effects led to cachexia. Our findings suggest that reduced ATP synthesis is linked to mitochondrial dysfunction, ultimately leading to skeletal muscle wasting and thus advance our understanding of skeletal muscle dysfunction suffered by cancer patients. This study represents a new line of research that can support the development of novel therapeutics in the molecular medicine of skeletal muscle wasting. Such therapeutics would have wide-spread applications not only for cancer patients, but also for many individuals suffering from other chronic or endstage diseases that exhibit muscle wasting, a condition for which only marginally effective treatments are currently available.
International Journal of Oncology | 2013
A. Aria Tzika; Cibely Cristine Fontes-Oliveira; Alexander A. Shestov; Caterina Constantinou; Nikolaos Psychogios; Valeria Righi; Dionyssios Mintzopoulos; Sílvia Busquets; Francisco J. López-Soriano; Sylvain Milot; François Lépine; Michael Mindrinos; Laurence G. Rahme; Josep M. Argilés
Approximately half of all cancer patients present with cachexia, a condition in which disease-associated metabolic changes lead to a severe loss of skeletal muscle mass. Working toward an integrated and mechanistic view of cancer cachexia, we investigated the hypothesis that cancer promotes mitochondrial uncoupling in skeletal muscle. We subjected mice to in vivo phosphorous-31 nuclear magnetic resonance (31P NMR) spectroscopy and subjected murine skeletal muscle samples to gas chromatography/mass spectrometry (GC/MS). The mice used in both experiments were Lewis lung carcinoma models of cancer cachexia. A novel ‘fragmented mass isotopomer’ approach was used in our dynamic analysis of 13C mass isotopomer data. Our 31P NMR and GC/MS results indicated that the adenosine triphosphate (ATP) synthesis rate and tricarboxylic acid (TCA) cycle flux were reduced by 49% and 22%, respectively, in the cancer-bearing mice (p<0.008; t-test vs. controls). The ratio of ATP synthesis rate to the TCA cycle flux (an index of mitochondrial coupling) was reduced by 32% in the cancer-bearing mice (p=0.036; t-test vs. controls). Genomic analysis revealed aberrant expression levels for key regulatory genes and transmission electron microscopy (TEM) revealed ultrastructural abnormalities in the muscle fiber, consistent with the presence of abnormal, giant mitochondria. Taken together, these data suggest that mitochondrial uncoupling occurs in cancer cachexia and thus point to the mitochondria as a potential pharmaceutical target for the treatment of cachexia. These findings may prove relevant to elucidating the mechanisms underlying skeletal muscle wasting observed in other chronic diseases, as well as in aging.
Molecular and Cellular Biochemistry | 2005
Caterina Constantinou; Marigoula Margarity; Theony Valcana
The aim of this study was to determine whether changes in the circulating thyroid hormone (TH) and brain synaptosomal TH content affected the relative levels of mRNA encoding different thyroid hormone receptor (TR) isoforms in adult rat brain. Northern analysis of polyA+RNA from cerebral cortex, hippocampus and cerebellum of control and hypothyroid adult rats was performed in order to determine the relative expression of all TR isoforms. Circulating and synaptosomal TH concentrations were determined by radioimmunoassay. Region-specific quantitative differences in the expression pattern of all TR isoforms in euthyroid animals and hypothyroid animals were recorded. In hypothyroidism, the levels of TRα2 mRNA (non-T3-binding isoform) were decreased in all brain regions examined. In contrast the relative expression of TRα1 was increased in cerebral cortex and hippocampus, whereas in cerebellum remained unaffected. The TRβ1 relative expression in cerebral cortex and hippocampus of hypothyroid animals was not affected, whereas this TR isoform was not detectable in cerebellum. The TR isoform mRNA levels returned to control values following T4 intraperitoneal administration to the hypothyroid rats. The obtained results show that in vivo depletion of TH regulates TR gene expression in adult rat brain in a region-specific manner. (Mol Cell Biochem 278: 93–100, 2005)
Journal of Proteome Research | 2011
Caterina Constantinou; Panagiotis K. Chrysanthopoulos; Marigoula Margarity; Maria I. Klapa
Although adult-onset hypothyroidism (AOH) has been connected to neural activity alterations, including movement, behavioral, and mental dysfunctions, the underlying changes in brain metabolic physiology have not been investigated in a systemic and systematic way. The current knowledge remains fragmented, referring to different experimental setups and recovered from various brain regions. In this study, we developed and applied a gas chromatography-mass spectrometry (GC-MS) metabolomics protocol to obtain a holistic view of the cerebellar metabolic physiology in a Balb/cJ mouse model of prolonged adult-onset hypothyroidism induced by a 64-day treatment with 1% potassium perchlorate in the drinking water of the animals. The high-throughput analysis enabled the correlation between multiple parallel-occurring metabolic phenomena; some have been previously related to AOH, while others implicated new pathways, designating new directions for further research. Specifically, an overall decline in the metabolic activity of the hypothyroid compared to the euthyroid cerebellum was observed, characteristically manifested in energy metabolism, glutamate/glutamine metabolism, osmolytic/antioxidant capacity, and protein/lipid synthesis. These alterations provide strong evidence that the mammalian cerebellum is metabolically responsive to AOH. In light of the cerebellum core functions and its increasingly recognized role in neurocognition, these findings further support the known phenotypic manifestations of AOH into movement and cognitive dysfunctions.
Physiology & Behavior | 2014
Anastasia-Varvara Ferlemi; Dionisis Avgoustatos; Alexandros G. Kokkosis; Vasilis Protonotarios; Caterina Constantinou; Marigoula Margarity
The aim of the present study was to investigate whether the underlying mechanism of lead (Pb)-induced effects on learning/memory and fear/anxiety behavior involves changes either on AChE G4 (most abundant in brain) or on G1 isoform activity, and/or to a putative local disruption of oxidant/antioxidant balance. Adult male mice were randomly divided into two groups (18 animals/group): a vehicle group [500ppm (mg/L) CH3COONa/day for 4weeks in their drinking water] and a Pb-treated group [500ppm Pb(CH3COO)2/day for 4weeks in their drinking water]. At the end of the treatment period, mice were subjected to the behavioral tasks. Learning/memory was tested by step-through passive avoidance test, whereas fear/anxiety was studied using the elevated plus-maze and thigmotaxis tests. Pb levels in mice brain were determined using atomic absorption spectrometry. AChE activity was determined colorimetrically, and GSH and MDA levels fluorometrically in whole brain minus cerebellum, cerebral cortex, midbrain, hippocampus, striatum and cerebellum. The possible correlations between learning/memory or fear/anxiety behavior with the AChE activity and/or the lipid peroxidation levels and GSH content were also examined. Pb consumption caused significant deficits on mice learning/memory ability and increased anxiety. The consumption of the Pb solution inhibited the activity of the two AChE isoforms in all brain regions tested. Moreover, Pb exposure increased lipid peroxidation and decreased GSH levels in all brain regions examined. Spearman correlation analysis revealed that the coefficients between the particular behaviors, AChE activity and redox balance were brain region- and AChE isoform-specific.
PLOS ONE | 2013
A. Aria Tzika; Caterina Constantinou; Arunava Bandyopadhaya; Nikolaos Psychogios; Sangseok Lee; Michael Mindrinos; J. A. Jeevendra Martyn; Ronald G. Tompkins; Laurence G. Rahme
Mitochondria integrate distinct signals that reflect specific threats to the host, including infection, tissue damage, and metabolic dysfunction; and play a key role in insulin resistance. We have found that the Pseudomonas aeruginosa quorum sensing infochemical, 2-amino acetophenone (2-AA), produced during acute and chronic infection in human tissues, including in the lungs of cystic fibrosis (CF) patients, acts as an interkingdom immunomodulatory signal that facilitates pathogen persistence, and host tolerance to infection. Transcriptome results have led to the hypothesis that 2-AA causes further harm to the host by triggering mitochondrial dysfunction in skeletal muscle. As normal skeletal muscle function is essential to survival, and is compromised in many chronic illnesses, including infections and CF-associated muscle wasting, we here determine the global effects of 2-AA on skeletal muscle using high-resolution magic-angle-spinning (HRMAS), proton (1H) nuclear magnetic resonance (NMR) metabolomics, in vivo 31P NMR, whole-genome expression analysis and functional studies. Our results show that 2-AA when injected into mice, induced a biological signature of insulin resistance as determined by 1H NMR analysis-, and dramatically altered insulin signaling, glucose transport, and mitochondrial function. Genes including Glut4, IRS1, PPAR-γ, PGC1 and Sirt1 were downregulated, whereas uncoupling protein UCP3 was up-regulated, in accordance with mitochondrial dysfunction. Although 2-AA did not alter high-energy phosphates or pH by in vivo 31P NMR analysis, it significantly reduced the rate of ATP synthesis. This affect was corroborated by results demonstrating down-regulation of the expression of genes involved in energy production and muscle function, and was further validated by muscle function studies. Together, these results further demonstrate that 2-AA, acts as a mediator of interkingdom modulation, and likely effects insulin resistance associated with a molecular signature of mitochondrial dysfunction in skeletal muscle. Reduced energy production and mitochondrial dysfunctional may further favor infection, and be an important step in the establishment of chronic and persistent infections.
Biochemistry | 2016
Serafoula Filou; Marie Lhomme; Eleni A. Karavia; Christina Kalogeropoulou; Vassilis Theodoropoulos; Evangelia Zvintzou; George Sakellaropoulos; Peristera-Ioanna Petropoulou; Caterina Constantinou; Anatol Kontush; Kyriakos E. Kypreos
In addition to high-density lipoprotein cholesterol (HDL-C) levels, HDL quality also appears to be very important for atheroprotection. Analysis of various clinical paradigms suggests that the lipid and apolipoprotein composition of HDL defines its size, shape, and functions and may determine its beneficial effects on human health. Previously, we reported that like apolipoprotein A-I (Apoa1), apolipoprotein E (Apoe) is also capable of promoting the de novo biogenesis of HDL with the participation of ATP binding cassette A lipid transporter member 1 (Abca1) and plasma enzyme lecithin:cholesterol acyltransferase (Lcat), in a manner independent of a functional Apoa1. Here, we performed a comparative analysis of the functions of these HDL subpopulations. Specifically, Apoe and Apoa1 double-deficient (Apoe(-/-) × Apoa1(-/-)) mice were infected with APOA1- or APOE3-expressing adenoviruses, and APOA1-containing HDL (APOA1-HDL) and APOE3-containing HDL (APOE3-HDL), respectively, were isolated and analyzed by biochemical and physicochemical methods. Western blot and lipidomic analyses indicated significant differences in the apolipoprotein and lipid composition of the two HDL species. Moreover APOE3-HDL presented a markedly reduced antioxidant potential and Abcg1-mediated cholesterol efflux capacity. Surprisingly, APOE3-HDL but not APOA1-HDL attenuated LPS-induced production of TNFα in RAW264.7 cells, suggesting that the anti-inflammatory effects of APOA1 are dependent on APOE expression. Taken together, our data indicate that APOA1 and APOE3 recruit different apolipoproteins and lipids on the HDL particle, leading to structurally and functionally distinct HDL subpopulations. The distinct role of these two apolipoproteins in the modulation of HDL functionality may pave the way toward the development of novel pharmaceuticals that aim to improve HDL functionality.
Journal of Lipid Research | 2014
Caterina Constantinou; Diogenis Mpatsoulis; Anastasios Natsos; Peristera-Ioanna Petropoulou; Evangelia Zvintzou; Abdulmaged M. Traish; Peter J. Voshol; Iordanes Karagiannides; Kyriakos E. Kypreos
Here, we investigated how LDL receptor deficiency (Ldlr−/−) modulates the effects of testosterone on obesity and related metabolic dysfunctions. Though sham-operated Ldlr−/− mice fed Western-type diet for 12 weeks became obese and showed disturbed plasma glucose metabolism and plasma cholesterol and TG profiles, castrated mice were resistant to diet-induced obesity and had improved glucose metabolism and reduced plasma TG levels, despite a further deterioration in their plasma cholesterol profile. The effect of hypogonadism on diet-induced weight gain of Ldlr−/− mice was independent of ApoE and Lrp1. Indirect calorimetry analysis indicated that hypogonadism in Ldlr−/− mice was associated with increased metabolic rate. Indeed, mitochondrial cytochrome c and uncoupling protein 1 expression were elevated, primarily in white adipose tissue, confirming increased mitochondrial metabolic activity due to thermogenesis. Testosterone replacement in castrated Ldlr−/− mice for a period of 8 weeks promoted diet-induced obesity, indicating a direct role of testosterone in the observed phenotype. Treatment of sham-operated Ldlr−/− mice with the aromatase inhibitor exemestane for 8 weeks showed that the obesity of castrated Ldlr−/− mice is independent of estrogens. Overall, our data reveal a novel role of Ldlr as functional modulator of metabolic alterations associated with hypogonadism.
Expert Review of Cardiovascular Therapy | 2014
Eleni A. Karavia; Evangelia Zvintzou; Peristera-Ioanna Petropoulou; Eva Xepapadaki; Caterina Constantinou; Kyriakos E. Kypreos
Epidemiological and clinical studies have over the years established that dyslipidemia constitutes the main risk factor for atherosclerosis. The inverse correlation between HDL cholesterol (HDL-C) levels and coronary heart disease morbidity and mortality identified HDL-C as an alternative pharmacological target to LDL-C and a potential anti-atherosclerosis marker. However, more recent data reinforced the principle of ‘HDL quality’ in atherosclerosis that refers to the functionality of HDL particle, as defined by its protein and lipid content, rather than HDL-C levels in plasma. Since HDL functionality depends on the genes and proteins of the HDL metabolic pathway, its apoprotein composition may serve as a surrogate marker of atheroprotection. In this manuscript we review the atheroprotective properties of HDL in relation to the proteins of HDL metabolic pathway and discuss what HDL-associated genes and proteins may reveal about HDL functionality in the assessment of coronary risk.
Neuropharmacology | 2005
Stamatis Bolaris; Caterina Constantinou; Theony Valcana; Marigoula Margarity
The aim of the current study was to elucidate whether the response of the adult rat brain to thyroid hormones is affected by the intensity of neuronal activity. For this purpose, the kinetic characteristics of nuclear T3 binding, the relative expression of thyroid hormone receptor (TR) isoforms and the synaptosomal content of thyroid hormones in adult rat brain were examined after administration of a single convulsion dose of pentylenetetrazole (PTZ). Experiments in adult Wistar rats revealed an increase (33%) of the density of specific T3 nuclear receptors in cerebral hemispheres 4h after PTZ-induced seizures while no changes were observed in the dissociation constant. The relative expression of the T3-binding isoforms of TRs was not affected, while there was a gradual decrease of the relative expression of the TR alpha2 variant (non-T3 binding isoform). The above changes were coupled with an increase of the synaptosomal T3 levels during the epileptic seizures. Our study revealed inversely proportional changes between the nuclear T3 binding sites and the TR alpha2 mRNA levels 4 h after PTZ-induced seizures, suggesting that the regulation of the expression of the non-T3 binding variant of TRs determines the nuclear T3 binding sites in adult rat brain, while the synaptosomal T3 levels could play a novel functional role in the signaling from the synapse to the nucleus.