Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cathal Seoighe is active.

Publication


Featured researches published by Cathal Seoighe.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection

Brandon F. Keele; Elena E. Giorgi; Jesus F. Salazar-Gonzalez; Julie M. Decker; Kimmy T. Pham; Maria G. Salazar; Chuanxi Sun; Truman Grayson; Shuyi Wang; Hui Li; Xiping Wei; Chunlai Jiang; Jennifer L. Kirchherr; Feng Gao; Jeffery A. Anderson; Li Hua Ping; Ronald Swanstrom; Georgia D. Tomaras; William A. Blattner; Paul A. Goepfert; J. Michael Kilby; Michael S. Saag; Eric Delwart; Michael P. Busch; Myron S. Cohen; David C. Montefiori; Barton F. Haynes; Brian Gaschen; Gayathri Athreya; Ha Y. Lee

The precise identification of the HIV-1 envelope glycoprotein (Env) responsible for productive clinical infection could be instrumental in elucidating the molecular basis of HIV-1 transmission and in designing effective vaccines. Here, we developed a mathematical model of random viral evolution and, together with phylogenetic tree construction, used it to analyze 3,449 complete env sequences derived by single genome amplification from 102 subjects with acute HIV-1 (clade B) infection. Viral env genes evolving from individual transmitted or founder viruses generally exhibited a Poisson distribution of mutations and star-like phylogeny, which coalesced to an inferred consensus sequence at or near the estimated time of virus transmission. Overall, 78 of 102 subjects had evidence of productive clinical infection by a single virus, and 24 others had evidence of productive clinical infection by a minimum of two to five viruses. Phenotypic analysis of transmitted or early founder Envs revealed a consistent pattern of CCR5 dependence, masking of coreceptor binding regions, and equivalent or modestly enhanced resistance to the fusion inhibitor T1249 and broadly neutralizing antibodies compared with Envs from chronically infected subjects. Low multiplicity infection and limited viral evolution preceding peak viremia suggest a finite window of potential vulnerability of HIV-1 to vaccine-elicited immune responses, although phenotypic properties of transmitted Envs pose a formidable defense.


Journal of Virology | 2009

Quantitating the Multiplicity of Infection with Human Immunodeficiency Virus Type 1 Subtype C Reveals a Non-Poisson Distribution of Transmitted Variants

Melissa-Rose Abrahams; Jeffrey A. Anderson; Elena E. Giorgi; Cathal Seoighe; Koleka Mlisana; Li-Hua Ping; Gayathri Athreya; Florette K. Treurnicht; Brandon F. Keele; Natasha Wood; Jesus F. Salazar-Gonzalez; Tanmoy Bhattacharya; Haitao Chu; Irving Hoffman; Shannon Galvin; Clement Mapanje; Peter N. Kazembe; R. Thebus; Susan A. Fiscus; Winston Hide; Myron S. Cohen; S. S. Abdool Karim; Barton F. Haynes; George M. Shaw; Beatrice H. Hahn; Bette T. Korber; R. Swanstrom; Carolyn Williamson

ABSTRACT Identifying the specific genetic characteristics of successfully transmitted variants may prove central to the development of effective vaccine and microbicide interventions. Although human immunodeficiency virus transmission is associated with a population bottleneck, the extent to which different factors influence the diversity of transmitted viruses is unclear. We estimate here the number of transmitted variants in 69 heterosexual men and women with primary subtype C infections. From 1,505 env sequences obtained using a single genome amplification approach we show that 78% of infections involved single variant transmission and 22% involved multiple variant transmissions (median of 3). We found evidence for mutations selected for cytotoxic-T-lymphocyte or antibody escape and a high prevalence of recombination in individuals infected with multiple variants representing another potential escape pathway in these individuals. In a combined analysis of 171 subtype B and C transmission events, we found that infection with more than one variant does not follow a Poisson distribution, indicating that transmission of individual virions cannot be seen as independent events, each occurring with low probability. While most transmissions resulted from a single infectious unit, multiple variant transmissions represent a significant fraction of transmission events, suggesting that there may be important mechanistic differences between these groups that are not yet understood.


BMC Bioinformatics | 2010

A flexible R package for nonnegative matrix factorization

Renaud Gaujoux; Cathal Seoighe

BackgroundNonnegative Matrix Factorization (NMF) is an unsupervised learning technique that has been applied successfully in several fields, including signal processing, face recognition and text mining. Recent applications of NMF in bioinformatics have demonstrated its ability to extract meaningful information from high-dimensional data such as gene expression microarrays. Developments in NMF theory and applications have resulted in a variety of algorithms and methods. However, most NMF implementations have been on commercial platforms, while those that are freely available typically require programming skills. This limits their use by the wider research community.ResultsOur objective is to provide the bioinformatics community with an open-source, easy-to-use and unified interface to standard NMF algorithms, as well as with a simple framework to help implement and test new NMF methods. For that purpose, we have developed a package for the R/BioConductor platform. The package ports public code to R, and is structured to enable users to easily modify and/or add algorithms. It includes a number of published NMF algorithms and initialization methods and facilitates the combination of these to produce new NMF strategies. Commonly used benchmark data and visualization methods are provided to help in the comparison and interpretation of the results.ConclusionsThe NMF package helps realize the potential of Nonnegative Matrix Factorization, especially in bioinformatics, providing easy access to methods that have already yielded new insights in many applications. Documentation, source code and sample data are available from CRAN.


Science Translational Medicine | 2011

Immune and Genetic Correlates of Vaccine Protection Against Mucosal Infection by SIV in Monkeys.

Norman L. Letvin; Srinivas S. Rao; David C. Montefiori; Michael S. Seaman; Yue Sun; So-Yon Lim; Wendy W. Yeh; Mohammed Asmal; Rebecca Gelman; Ling Shen; James B. Whitney; Cathal Seoighe; Miguel Lacerda; Sheila M. Keating; Philip J. Norris; Michael G. Hudgens; Peter B. Gilbert; Adam P. Buzby; Linh Mach; Jinrong Zhang; Harikrishnan Balachandran; George M. Shaw; Stephen D. Schmidt; John Paul Todd; Alan Dodson; John R. Mascola; Gary J. Nabel

A vaccine protecting monkeys against mucosal infection by simian immunodeficiency virus sheds light on immune and genetic correlates of protection. Unraveling Immune Correlates of Vaccine Protection Developing an effective vaccine against HIV-1, the virus that causes AIDS, has been a huge challenge that has stymied AIDS researchers for several decades. A key problem for HIV vaccine trials has been the lack of immune correlates that indicate which antibody and T cell responses in the vaccinees correlate directly with a protective effect. The only HIV vaccine trial to date that has shown a protective effect is the RV144 trial carried out in Thailand between 2003 and 2006, with the final results reported in 2009. In this trial of 16,400 Thai volunteers, those vaccinated with a prime-boost HIV vaccine showed a reduction in the rate of infection by HIV-1 of 31% compared to volunteers given a placebo. The protective effect was seen for up to 3 years after the initial vaccination, but the immune correlates of protection by this vaccine are still not known. In an effort to learn more about possible immune correlates of HIV vaccine protection, Letvin and colleagues used a prime/boost vaccine regimen in monkeys that was similar to that used in the RV144 trial. Monkeys were vaccinated with a plasmid DNA prime/recombinant adenovirus serotype 5 (rAd5) boost vaccine regimen and then were challenged with intrarectal doses of one of two isolates of the simian immunodeficiency virus (SIV) every week for 12 weeks. Although the vaccine had no impact on acquisition of the SIVmac251 isolate (which is tough for the monkey immune system to neutralize), the vaccine provided a 50% reduction in infection with the SIVsmE660 isolate (which more readily undergoes neutralization). The authors then examined a variety of immune responses in the protected vaccinated monkeys including cellular, antibody, and innate immune responses; they also examined whether protective host alleles were present in the protected animals. They found that low levels of neutralizing antibodies and a CD4+ T cell response against the HIV envelope (Env) protein correlated with the protective effect. In addition, monkeys that expressed two TRIM5 alleles that help to restrict SIV replication in host cells were protected by the vaccine, whereas monkeys expressing one TRIM5 allele that is permissive for SIV replication were not. This study begins to unravel the immune and genetic correlates of protection in nonhuman primates and highlights the need to scrutinize these types of correlates in future trials of HIV vaccines in human volunteers. The RV144 vaccine trial in Thailand demonstrated that an HIV vaccine could prevent infection in humans and highlights the importance of understanding protective immunity against HIV. We used a nonhuman primate model to define immune and genetic mechanisms of protection against mucosal infection by the simian immunodeficiency virus (SIV). A plasmid DNA prime/recombinant adenovirus serotype 5 (rAd5) boost vaccine regimen was evaluated for its ability to protect monkeys from infection by SIVmac251 or SIVsmE660 isolates after repeat intrarectal challenges. Although this prime-boost vaccine regimen failed to protect against SIVmac251 infection, 50% of vaccinated monkeys were protected from infection with SIVsmE660. Among SIVsmE660-infected animals, there was about a one-log reduction in peak plasma virus RNA in monkeys expressing the major histocompatibility complex class I allele Mamu-A*01, implicating cytotoxic T lymphocytes in the control of SIV replication once infection is established. Among Mamu-A*01–negative monkeys challenged with SIVsmE660, no CD8+ T cell response or innate immune response was associated with protection against virus acquisition. However, low levels of neutralizing antibodies and an envelope-specific CD4+ T cell response were associated with vaccine protection in these monkeys. Moreover, monkeys that expressed two TRIM5 alleles that restrict SIV replication were more likely to be protected from infection than monkeys that expressed at least one permissive TRIM5 allele. This study begins to elucidate the mechanisms of vaccine protection against immunodeficiency viruses and highlights the need to analyze these immune and genetic correlates of protection in future trials of HIV vaccine strategies.


Bioinformatics | 2006

Robust inference of positive selection from recombining coding sequences

Konrad Scheffler; Darren P. Martin; Cathal Seoighe

MOTIVATION Accurate detection of positive Darwinian selection can provide important insights to researchers investigating the evolution of pathogens. However, many pathogens (particularly viruses) undergo frequent recombination and the phylogenetic methods commonly applied to detect positive selection have been shown to give misleading results when applied to recombining sequences. We propose a method that makes maximum likelihood inference of positive selection robust to the presence of recombination. This is achieved by allowing tree topologies and branch lengths to change across detected recombination breakpoints. Further improvements are obtained by allowing synonymous substitution rates to vary across sites. RESULTS Using simulation we show that, even for extreme cases where recombination causes standard methods to reach false positive rates >90%, the proposed method decreases the false positive rate to acceptable levels while retaining high power. We applied the method to two HIV-1 datasets for which we have previously found that inference of positive selection is invalid owing to high rates of recombination. In one of these (env gene) we still detected positive selection using the proposed method, while in the other (gag gene) we found no significant evidence of positive selection. AVAILABILITY A HyPhy batch language implementation of the proposed methods and the HIV-1 datasets analysed are available at http://www.cbio.uct.ac.za/pub_support/bioinf06. The HyPhy package is available at http://www.hyphy.org, and it is planned that the proposed methods will be included in the next distribution. RDP2 is available at http://darwin.uvigo.es/rdp/rdp.html


PLOS Pathogens | 2009

HIV Evolution in Early Infection: Selection Pressures, Patterns of Insertion and Deletion, and the Impact of APOBEC

Natasha Wood; Tanmoy Bhattacharya; Brandon F. Keele; Elena E. Giorgi; Michael Liu; Brian Gaschen; Marcus Daniels; Guido Ferrari; Barton F. Haynes; Andrew J. McMichael; George M. Shaw; Beatrice H. Hahn; Bette T. Korber; Cathal Seoighe

The pattern of viral diversification in newly infected individuals provides information about the host environment and immune responses typically experienced by the newly transmitted virus. For example, sites that tend to evolve rapidly across multiple early-infection patients could be involved in enabling escape from common early immune responses, could represent adaptation for rapid growth in a newly infected host, or could represent reversion from less fit forms of the virus that were selected for immune escape in previous hosts. Here we investigated the diversification of HIV-1 env coding sequences in 81 very early B subtype infections previously shown to have resulted from transmission or expansion of single viruses (n = 78) or two closely related viruses (n = 3). In these cases, the sequence of the infecting virus can be estimated accurately, enabling inference of both the direction of substitutions as well as distinction between insertion and deletion events. By integrating information across multiple acutely infected hosts, we find evidence of adaptive evolution of HIV-1 env and identify a subset of codon sites that diversified more rapidly than can be explained by a model of neutral evolution. Of 24 such rapidly diversifying sites, 14 were either i) clustered and embedded in CTL epitopes that were verified experimentally or predicted based on the individuals HLA or ii) in a nucleotide context indicative of APOBEC-mediated G-to-A substitutions, despite having excluded heavily hypermutated sequences prior to the analysis. In several cases, a rapidly evolving site was embedded both in an APOBEC motif and in a CTL epitope, suggesting that APOBEC may facilitate early immune escape. Ten rapidly diversifying sites could not be explained by CTL escape or APOBEC hypermutation, including the most frequently mutated site, in the fusion peptide of gp41. We also examined the distribution, extent, and sequence context of insertions and deletions, and we provide evidence that the length variation seen in hypervariable loop regions of the envelope glycoprotein is a consequence of selection and not of mutational hotspots. Our results provide a detailed view of the process of diversification of HIV-1 following transmission, highlighting the role of CTL escape and hypermutation in shaping viral evolution during the establishment of new infections.


PLOS Pathogens | 2008

Transmission of HIV-1 CTL Escape Variants Provides HLA-Mismatched Recipients with a Survival Advantage

Denis R. Chopera; Zenda L. Woodman; Koleka Mlisana; Mandla Mlotshwa; Darren P. Martin; Cathal Seoighe; Florette K. Treurnicht; Debra Assis de Rosa; Winston Hide; Salim Safurdeen. Abdool Karim; Clive M. Gray; Carolyn Williamson

One of the most important genetic factors known to affect the rate of disease progression in HIV-infected individuals is the genotype at the Class I Human Leukocyte Antigen (HLA) locus, which determines the HIV peptides targeted by cytotoxic T-lymphocytes (CTLs). Individuals with HLA-B*57 or B*5801 alleles, for example, target functionally important parts of the Gag protein. Mutants that escape these CTL responses may have lower fitness than the wild-type and can be associated with slower disease progression. Transmission of the escape variant to individuals without these HLA alleles is associated with rapid reversion to wild-type. However, the question of whether infection with an escape mutant offers an advantage to newly infected hosts has not been addressed. Here we investigate the relationship between the genotypes of transmitted viruses and prognostic markers of disease progression and show that infection with HLA-B*57/B*5801 escape mutants is associated with lower viral load and higher CD4+ counts.


Gene | 1999

Updated map of duplicated regions in the yeast genome.

Cathal Seoighe; Kenneth H. Wolfe

We have updated the map of duplicated chromosomal segments in the Saccharomyces cerevisiae genome originally published by Wolfe and Shields in 1997 (Nature 387, 708-713). The new analysis is based on the more sensitive Smith Waterman search method instead of BLAST. The parameters used to identify duplicated chromosomal regions were optimized such as to maximize the amount of the genome placed into paired regions, under the assumption that the hypothesis that the entire genome was duplicated in a single event is correct. The core of the new map, with 52 pairs of regions containing three or more duplicated genes, is largely unchanged from our original map. 39 tRNA gene pairs and one snRNA pair have been added. To find additional pairs of genes that may have been formed by whole genome duplication, we searched through the parts of the genome that are not covered by this core map, looking for putative duplicated chromosomal regions containing only two duplicate genes instead of three, or having lower-scoring gene pairs. This approach identified a further 32 candidate paired regions, bringing the total number of protein-coding genes on the duplication map to 905 (16% of the proteome). The updated map suggests that a second copy of the ribosomal DNA array has been deleted from chromosome IV.


Yeast | 1998

Evolution of gene order and chromosome number in Saccharomyces, Kluyveromyces and related fungi

Robert S. Keogh; Cathal Seoighe; Kenneth H. Wolfe

The extent to which the order of genes along chromosomes is conserved between Saccharomyces cerevisiae and related species was studied by analysing data from DNA sequence databases. As expected, the extent of gene order conservation decreases with increasing evolutionary distance. About 59% of adjacent gene pairs in Kluyveromyces lactis or K. marxianus are also adjacent in S. cerevisiae, and a further 16% of Kluyveromyces neighbours can be explained in terms of the inferred ancestral gene order in Saccharomyces prior to the occurrence of an ancient whole‐genome duplication. Only 13% of Candida albicans linkages, and no Schizosaccharomyces pombe linkages, are conserved. Analysis of gene order arrangements, chromosome numbers, and ribosomal RNA sequences suggests that genome duplication occurred before the divergence of the four species in Saccharomyces sensu stricto (all of which have 16 chromosomes), but after this lineage had diverged from Saccharomyces kluyveri and the Kluyveromyces lactis/marxianus species assemblage.


The Journal of Infectious Diseases | 2004

Incidence of HIV-1 Dual Infection and Its Association with Increased Viral Load Set Point in a Cohort of HIV-1 Subtype C-Infected Female Sex Workers

Jandre Grobler; Clive M. Gray; Cecilia Rademeyer; Cathal Seoighe; Gita Ramjee; Salim Safurdeen. Abdool Karim; Lynn Morris; Carolyn Williamson

This longitudinal study aimed to determine the incidence and pathogenic implications of dual human immunodeficiency virus type 1 (HIV-1) infection in a cohort of female sex workers. Blood samples from 31 recently infected women were screened by use of a heteroduplex mobility assay and sequencing. The median viral load set point was 5404 copies/mL (n=22), which was measured by use of the bDNA assay. Within 3 months of infection, 19% (6/31) of the women were dually infected with 2 distinct HIV-1 subtype C viruses. No evidence of superinfection was detected over the course of 24 months of follow-up, indicating that the risk of dual infection is highest around the time of the initial infection. There was a significant association between dual infection and elevated viral load set point.

Collaboration


Dive into the Cathal Seoighe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chris Gehring

University of the Western Cape

View shared research outputs
Top Co-Authors

Avatar

Florette K. Treurnicht

National Health Laboratory Service

View shared research outputs
Top Co-Authors

Avatar

Koleka Mlisana

University of KwaZulu-Natal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge