Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Catharina de Lange Davies is active.

Publication


Featured researches published by Catharina de Lange Davies.


Journal of Nanobiotechnology | 2016

Cellular uptake and intracellular degradation of poly(alkyl cyanoacrylate) nanoparticles

Einar Sulheim; Habib Baghirov; Eva von Haartman; Andreas Bøe; Andreas Åslund; Catharina de Lange Davies

AbstractBackgroundnPoly(alkyl cyanoacrylate) (PACA) nanoparticles have shown promise as drug carriers both to solid tumors and across the blood–brain barrier. Efficient drug delivery requires both high cellular uptake of the nanoparticles and release of the drug from the nanoparticles. Release of hydrophobic drugs from PACA nanoparticles is primarily governed by nanoparticle degradation, and this process has been poorly studied at the cellular level. Here we use the hydrophobic model drug Nile Red 668 (NR668) to investigate intracellular degradation of PACA nanoparticles by measuring changes in NR668 fluorescence emission and lifetime, as the spectral properties of NR668 depend on the hydrophobicity of the dye environment. We also assess the potential of poly(butyl cyanoacrylate) (PBCA) and poly(octyl cyanoacrylate) (POCA) nanoparticles for intracellular drug delivery in the prostate cancer cell line PC3 and rat brain endothelial cell line RBE4 and the role of endocytosis pathways in PACA nanoparticle uptake in those cell lines.ResultsFluorescence lifetime imaging, emission spectra analysis and Förster resonance energy transfer indicated that the intracellular degradation was in line with the degradation found by direct methods such as gas chromatography and scanning electron microscopy, showing that PBCA has a faster degradation rate compared to POCA. The combined P(BCA/OCA) nanoparticles had an intermediate degradation rate. The uptake of POCA and PBCA nanoparticles was much higher in RBE4 than in PC3 cells. Endocytosis inhibition studies showed that both clathrin- and caveolin-mediated endocytosis were involved in PACA nanoparticle uptake, and that the former played a predominant role, particularly in PC3 cells.ConclusionsIn the present study, we used three different optical techniques to show that within a 24-hour period PBCA nanoparticles degraded significantly inside cells, releasing their payload into the cytosol, while POCA nanoparticles remained intact. This indicates that it is possible to tune the intracellular drug release rate by choosing appropriate monomers from the PACA family or by using hybrid PACA nanoparticles containing different monomers. In addition, we showed that the uptake of PACA nanoparticles depends not only on the monomer material, but also on the cell type, and that different cell lines can use different internalization pathways.


Nature Communications | 2016

Augmenting drug-carrier compatibility improves tumour nanotherapy efficacy

Yiming Zhao; Francois Fay; Sjoerd Hak; Jose Manuel Perez-Aguilar; Brenda L. Sanchez-Gaytan; Brandon Goode; Raphaël Duivenvoorden; Catharina de Lange Davies; Astrid Bjørkøy; Harel Weinstein; Zahi A. Fayad; Carlos Pérez-Medina; Willem J. M. Mulder

A major goal of cancer nanotherapy is to use nanoparticles as carriers for targeted delivery of anti-tumour agents. The drug–carrier association after intravenous administration is essential for efficient drug delivery to the tumour. However, a large number of currently available nanocarriers are self-assembled nanoparticles whose drug-loading stability is critically affected by the in vivo environment. Here we used in vivo FRET imaging to systematically investigate how drug–carrier compatibility affects drug release in a tumour mouse model. We found the drugs hydrophobicity and miscibility with the nanoparticles are two independent key parameters that determine its accumulation in the tumour. Next, we applied these findings to improve chemotherapeutic delivery by augmenting the parent drugs compatibility; as a result, we achieved better antitumour efficacy. Our results help elucidate nanomedicines in vivo fate and provide guidelines for efficient drug delivery.


Journal of Biophotonics | 2015

Polarization second harmonic generation microscopy provides quantitative enhanced molecular specificity for tissue diagnostics

Kirsten Marie Grønhaug; Elisabeth I. Romijn; Andreas Finnøy; Catharina de Lange Davies; Jon Olav Drogset; Magnus B. Lilledahl

Due to specific structural organization at the molecular level, several biomolecules (e.g., collagen, myosin etc.) which are strong generators of second harmonic generation (SHG) signals, exhibit unique responses depending on the polarization of the excitation light. By using the polarization second harmonic generation (p-SHG) technique, the values of the second order susceptibility components can be used to differentiate the types of molecule, which cannot be done by the use of a standard SHG intensity image. In this report we discuss how to implement p-SHG on a commercial multiphoton microscope and overcome potential artifacts in susceptibility (χ) image. Furthermore we explore the potential of p-SHG microscopy by applying the technique to different types of tissue in order to determine corresponding reference values of the ratio of second-order χ tensor elements. These values may be used as a bio-marker to detect any structural alterations in pathological tissue for diagnostic purposes. The SHG intensity image (red) in (a) shows the distribution of collagen fibers in ovary tissue but cannot determine the type of collagen fiber. However, the histogram distribution (b) for the values of the χ tensor element ratio can be used to quantitatively identify the types of collagen fibers.


Cytometry Part A | 2017

Labeling nanoparticles: Dye leakage and altered cellular uptake

Sofie Snipstad; Sjoerd Hak; Habib Baghirov; Einar Sulheim; Ýrr Mørch; Sylvie Lélu; Eva von Haartman; Marcus Bäck; K. Peter R. Nilsson; Andrey S. Klymchenko; Catharina de Lange Davies; Andreas Åslund

In vitro and in vivo behavior of nanoparticles (NPs) is often studied by tracing the NPs with fluorescent dyes. This requires stable incorporation of dyes within the NPs, as dye leakage may give a wrong interpretation of NP biodistribution, cellular uptake, and intracellular distribution. Furthermore, NP labeling with trace amounts of dye should not alter NP properties such as interactions with cells or tissues. To allow for versatile NP studies with a variety of fluorescence‐based assays, labeling of NPs with different dyes is desirable. Hence, when new dyes are introduced, simple and fast screening methods to assess labeling stability and NP–cell interactions are needed. For this purpose, we have used a previously described generic flow cytometry assay; incubation of cells with NPs at 4 and 37°C. Cell–NP interaction is confirmed by cellular fluorescence after 37°C incubation, and NP‐dye retention is confirmed when no cellular fluorescence is detected at 4°C. Three different NP‐platforms labeled with six different dyes were screened, and a great variability in dye retention was observed. Surprisingly, incorporation of trace amounts of certain dyes was found to reduce or even inhibit NP uptake. This work highlights the importance of thoroughly evaluating every dye–NP combination before pursuing NP‐based applications.


Journal of Controlled Release | 2016

Acoustic Cluster Therapy (ACT) — pre-clinical proof of principle for local drug delivery and enhanced uptake

Annemieke van Wamel; Andrew Healey; Per Christian Sontum; Svein Kvåle; Nigel L. Bush; Jeffrey C. Bamber; Catharina de Lange Davies

Proof of principle for local drug delivery with Acoustic Cluster Therapy (ACT) was demonstrated in a human prostate adenocarcinoma growing in athymic mice, using near infrared (NIR) dyes as model molecules. A dispersion of negatively charged microbubble/positively charged microdroplet clusters are injected i.v., activated within the target pathology by diagnostic ultrasound (US), undergo an ensuing liquid-to-gas phase shift and transiently deposit 20-30μm large bubbles in the microvasculature, occluding blood flow for ~5-10min. Further application of low frequency US induces biomechanical effects that increase the vascular permeability, leading to a locally enhanced extravasation of components from the vascular compartment (e.g., released or co-administered drugs). Results demonstrated deposition of activated bubbles in tumor vasculature. Following ACT treatment, a significant and tumor specific increase in the uptake of a co-administered macromolecular NIR dye was shown. In addition, ACT compound loaded with a lipophilic NIR dye to the microdroplet component was shown to facilitate local release and tumor specific uptake. Whereas the mechanisms behind the observed increased and tumor specific uptake are not fully elucidated, it is demonstrated that the ACT concept can be applied as a versatile technique for targeted drug delivery.


PLOS ONE | 2016

Feasibility study of the permeability and uptake of mesoporous silica nanoparticles across the blood-brain barrier

Habib Baghirov; Didem Sen Karaman; Tapani Viitala; Alain Duchanoy; Yan-Ru Lou; Veronika Mamaeva; Evgeny Pryazhnikov; Leonard Khiroug; Catharina de Lange Davies; Cecilia Sahlgren; Jessica M. Rosenholm

Drug delivery into the brain is impeded by the blood-brain-barrier (BBB) that filters out the vast majority of drugs after systemic administration. In this work, we assessed the transport, uptake and cytotoxicity of promising drug nanocarriers, mesoporous silica nanoparticles (MSNs), in in vitro models of the BBB. RBE4 rat brain endothelial cells and Madin-Darby canine kidney epithelial cells, strain II, were used as BBB models. We studied spherical and rod-shaped MSNs with the following modifications: bare MSNs and MSNs coated with a poly(ethylene glycol)-poly(ethylene imine) (PEG-PEI) block copolymer. In transport studies, MSNs showed low permeability, whereas the results of the cellular uptake studies suggest robust uptake of PEG-PEI-coated MSNs. None of the MSNs showed significant toxic effects in the cell viability studies. While the shape effect was detectable but small, especially in the real-time surface plasmon resonance measurements, coating with PEG-PEI copolymers clearly facilitated the uptake of MSNs. Finally, we evaluated the in vivo detectability of one of the best candidates, i.e. the copolymer-coated rod-shaped MSNs, by two-photon in vivo imaging in the brain vasculature. The particles were clearly detectable after intravenous injection and caused no damage to the BBB. Thus, when properly designed, the uptake of MSNs could potentially be utilized for the delivery of drugs into the brain via transcellular transport.


Journal of Controlled Release | 2016

Acoustic Cluster Therapy (ACT) enhances the therapeutic efficacy of paclitaxel and Abraxane® for treatment of human prostate adenocarcinoma in mice

Annemieke van Wamel; Per Christian Sontum; Andrew Healey; Svein Kvåle; Nigel L. Bush; Jeffrey C. Bamber; Catharina de Lange Davies

Acoustic cluster therapy (ACT) is a novel approach for ultrasound mediated, targeted drug delivery. In the current study, we have investigated ACT in combination with paclitaxel and Abraxane® for treatment of a subcutaneous human prostate adenocarcinoma (PC3) in mice. In combination with paclitaxel (12mg/kg given i.p.), ACT induced a strong increase in therapeutic efficacy; 120days after study start, 42% of the animals were in stable, complete remission vs. 0% for the paclitaxel only group and the median survival was increased by 86%. In combination with Abraxane® (12mg paclitaxel/kg given i.v.), ACT induced a strong increase in the therapeutic efficacy; 60days after study start 100% of the animals were in stable, remission vs. 0% for the Abraxane® only group, 120days after study start 67% of the animals were in stable, complete remission vs. 0% for the Abraxane® only group. For the ACT+Abraxane group 100% of the animals were alive after 120days vs. 0% for the Abraxane® only group. Proof of concept for Acoustic Cluster Therapy has been demonstrated; ACT markedly increases the therapeutic efficacy of both paclitaxel and Abraxane® for treatment of human prostate adenocarcinoma in mice.


Colloids and Surfaces B: Biointerfaces | 2017

The effect of poly(ethylene glycol) coating and monomer type on poly(alkyl cyanoacrylate) nanoparticle interactions with lipid monolayers and cells

Habib Baghirov; Sopio Melikishvili; Einar Sulheim; Andreas Åslund; Tibor Hianik; Catharina de Lange Davies

The interaction of the promising drug carriers poly(alkyl cyanoacrylate) nanoparticles (PACA NPs) with lipid monolayers modeling the cell membrane and with RBE4 immortalized rat brain endothelial cells was compared to assess the relevance of lipid monolayer-based cell membrane models for PACA NP cellular uptake. NP properties such as size and charge of NPs and density of poly(ethylene glycol) coating (PEG) were kept in a narrow range to assess whether the type of PEG coating and the PACA monomer affected NP-monolayer and NP-cell interactions. The interaction with lipid monolayers was evaluated using surface pressure measurements and Brewster angle microscopy. NP association with and uptake by cells were assessed using flow cytometry and confocal laser scanning microscopy. The interaction between NPs and both lipid monolayers and the plasma membrane depended on the type of PEG. PEG density affected cellular uptake but not interaction with lipid monolayers. NP monomer, NPs size and charge had no effect on the interaction. This might be due to the fact that the size and charge distribution was kept rather narrow to study the effect of PACA monomer and PEG type. In conclusion, while modeling solely the passive aspect of NP-cell interactions, lipid monolayers nevertheless proved a valuable cell membrane model whose interaction with PACA NPs correlated well with NP-cell interaction. In addition, both NP-monolayer and NP-cell interactions were dependent on PEGylation type, which could be used in the design of NPs to either facilitate or hinder cellular uptake, depending on the intended purpose.


International Journal of Molecular Sciences | 2015

Single Cell Confocal Raman Spectroscopy of Human Osteoarthritic Chondrocytes: A Preliminary Study

Gajendra P. Singh; Kirsten Marie Grønhaug; Nils Kristian Afseth; Catharina de Lange Davies; Jon Olav Drogset; Magnus B. Lilledahl

A great deal of effort has been focused on exploring the underlying molecular mechanism of osteoarthritis (OA) especially at the cellular level. We report a confocal Raman spectroscopic investigation on human osteoarthritic chondrocytes. The objective of this investigation is to identify molecular features and the stage of OA based on the spectral signatures corresponding to bio-molecular changes at the cellular level in chondrocytes. In this study, we isolated chondrocytes from human osteoarthritic cartilage and acquired Raman spectra from single cells. Major spectral differences between the cells obtained from different International Cartilage Repair Society (ICRS) grades of osteoarthritic cartilage were identified. During progression of OA, a decrease in protein content and an increase in cell death were observed from the vibrational spectra. Principal component analysis and subsequent cross-validation was able to associate osteoarthritic chondrocytes to ICRS Grade I, II and III with specificity 100.0%, 98.1%, and 90.7% respectively, while, sensitivity was 98.6%, 82.8%, and 97.5% respectively. The overall predictive efficiency was 92.2%. Our pilot study encourages further use of Raman spectroscopy as a noninvasive and label free technique for revealing molecular features associated with osteoarthritic chondrocytes.


Analytical and Bioanalytical Chemistry | 2015

Optical investigation of osteoarthritic human cartilage (ICRS grade) by confocal Raman spectroscopy: a pilot study

Kirsten Marie Grønhaug; Nils Kristian Afseth; Vidar Isaksen; Catharina de Lange Davies; Jon Olav Drogset; Magnus B. Lilledahl

Biomolecular changes in the cartilage matrix during the early stage of osteoarthritis may be detected by Raman spectroscopy. The objective of this investigation was to determine vibrational spectral differences among different grades (grades I, II, and III) of osteoarthritis in human osteoarthritic cartilage, which was classified according to the International Cartilage Repair Society (ICRS) grading system. Degenerative articular cartilage samples were collected during total joint replacement surgery and were classified according to the ICRS grading system for osteoarthritis. Twelve cartilage sections (4 sections of each ICRS grades I, II, and III) were selected for Raman spectroscopic analysis. Safranin-O/Fast green was used for histological staining and assignment of the Osteoarthritis Research Society International (OARSI) grade. Multivariate principal component analysis (PCA) was used for data analysis. Spectral analysis indicates that the content of disordered coil collagen increases significantly during the early progression of osteoarthritis. However, the increase was not statistically significant during later stages of the disease. A decrease in the content of proteoglycan was observed only during advanced stages of osteoarthritis. Our investigation shows that Raman spectroscopy can classify the different stage of osteoarthritic cartilage and can provide details on biochemical changes. This proof-of-concept study encourages further investigation of fresh cartilage on a larger population using fiber-based miniaturized Raman probe for the development of in vivo Raman arthroscopy as a potential diagnostic tool for osteoarthritis.

Collaboration


Dive into the Catharina de Lange Davies's collaboration.

Top Co-Authors

Avatar

Einar Sulheim

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Andreas Åslund

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Habib Baghirov

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Sofie Snipstad

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Annemieke van Wamel

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jon Olav Drogset

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Magnus B. Lilledahl

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Sjoerd Hak

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Sverre Helge Torp

Norwegian University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge