Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Catharina W. Wieland is active.

Publication


Featured researches published by Catharina W. Wieland.


Journal of Immunology | 2004

Toll-Like Receptor 2 Plays a Role in the Early Inflammatory Response to Murine Pneumococcal Pneumonia but Does Not Contribute to Antibacterial Defense

Sylvia Knapp; Catharina W. Wieland; Cornelis van 't Veer; Osamu Takeuchi; Shizuo Akira; Sandrine Florquin; Tom van der Poll

Toll-like receptors (TLR) are crucial pattern recognition receptors in innate immunity. The importance of TLR2 in host defense against Gram-positive bacteria has been suggested by the fact that this receptor recognizes major Gram-positive cell wall components, such as peptidoglycan and lipoteichoic acid. To determine the role of TLR2 in pulmonary Gram-positive infection, we first established that TLR2 is indispensable for alveolar macrophage responsiveness toward Streptococcus pneumoniae. Nonetheless, TLR2 gene-deficient mice intranasally inoculated with S. pneumoniae at doses varying from nonlethal (with complete clearance of the infection) to lethal displayed only a modestly reduced inflammatory response in their lungs and an unaltered antibacterial defense when compared with normal wild-type mice. These data suggest that TLR2 plays a limited role in the innate immune response to pneumococcal pneumonia, and that additional pattern recognition receptors likely are involved in host defense against this common respiratory pathogen.


Infection and Immunity | 2007

Protective immune responses to a recombinant adenovirus type 35 tuberculosis vaccine in two mouse strains: CD4 and CD8 T-cell epitope mapping and role of gamma interferon.

Katarina Radošević; Catharina W. Wieland; Ariane Rodriguez; Gerrit Jan Weverling; Ratna Mintardjo; Gert Gillissen; Ronald Vogels; Yasir A. W. Skeiky; David M. Hone; Jerald C. Sadoff; Tom van der Poll; Menzo Jans Emco Havenga; Jaap Goudsmit

ABSTRACT There is an urgent need for an efficacious vaccine against tuberculosis (TB). Cellular immune responses are key to an effective protective response against TB. Recombinant adenovirus (rAd) vectors are especially suited to the induction of strong T-cell immunity and thus represent promising vaccine vehicles for the prevention of TB. We have previously reported on rAd vector serotype 35, the serotype of choice due to low preexisting immunity worldwide, which expresses a unique fusion protein of Mycobacterium tuberculosis antigens Ag85A, Ag85B, and TB10.4 (Ad35-TBS). Here, we demonstrate that Ad35-TBS confers protection against M. tuberculosis when administered to mice through either an intranasal or an intramuscular route. Histological evaluation of lung tissue corroborated the protection and, in addition, demonstrated differences between two mouse strains, with diffuse inflammation in BALB/c mice and distinct granuloma formation in C57BL/6 mice. Epitope mapping analysis in these mouse strains showed that the major T-cell epitopes are conserved in the artificial fusion protein, while three novel CD8 peptides were discovered. Using a defined set of T-cell epitopes, we reveal differences between the two mouse strains in the type of protective immune response, demonstrating that different antigen-specific gamma interferon (IFN-γ)-producing T cells can provide protection against M. tuberculosis challenge. While in BALB/c (H-2d) mice, a dominant CD8 T-cell response was detected, in C57BL/6 (H-2b) mice, more balanced CD4/CD8 T-cell responses were observed, with a more pronounced CD4 response in the lungs. These results unify conflicting reports on the relative importance of CD4 versus CD8 T-cell responses in protection and emphasize the key role of IFN-γ.


PLOS Medicine | 2007

Toll-Like Receptor 2 Impairs Host Defense in Gram-Negative Sepsis Caused by Burkholderia pseudomallei (Melioidosis)

W. Joost Wiersinga; Catharina W. Wieland; Mark C. Dessing; Narisara Chantratita; Allen C. Cheng; Direk Limmathurotsakul; Wirongrong Chierakul; Masja Leendertse; Sandrine Florquin; Alex F. de Vos; Nicholas J. White; Arjen M. Dondorp; Nicholas P. J. Day; Sharon J. Peacock; Tom van der Poll

Background Toll-like receptors (TLRs) are essential in host defense against pathogens by virtue of their capacity to detect microbes and initiate the immune response. TLR2 is seen as the most important receptor for gram-positive bacteria, while TLR4 is regarded as the gram-negative TLR. Melioidosis is a severe infection caused by the gram-negative bacterium, Burkholderia pseudomallei, that is endemic in Southeast Asia. We aimed to characterize the expression and function of TLRs in septic melioidosis. Methods and Findings Patient studies: 34 patients with melioidosis demonstrated increased expression of CD14, TLR1, TLR2, and TLR4 on the cell surfaces of monocytes and granulocytes, and increased CD14, TLR1, TLR2, TLR4, LY96 (also known as MD-2), TLR5, and TLR10 mRNA levels in purified monocytes and granulocytes when compared with healthy controls. In vitro experiments: Whole-blood and alveolar macrophages obtained from TLR2 and TLR4 knockout (KO) mice were less responsive to B. pseudomallei in vitro, whereas in the reverse experiment, transfection of HEK293 cells with either TLR2 or TLR4 rendered these cells responsive to this bacterium. In addition, the lipopolysaccharide (LPS) of B. pseudomallei signals through TLR2 and not through TLR4. Mouse studies: Surprisingly, TLR4 KO mice were indistinguishable from wild-type mice with respect to bacterial outgrowth and survival in experimentally induced melioidosis. In contrast, TLR2 KO mice displayed a markedly improved host defenses as reflected by a strong survival advantage together with decreased bacterial loads, reduced lung inflammation, and less distant-organ injury. Conclusions Patients with melioidosis displayed an up-regulation of multiple TLRs in peripheral blood monocytes and granulocytes. Although both TLR2 and TLR4 contribute to cellular responsiveness to B. pseudomallei in vitro, TLR2 detects the LPS of B. pseudomallei, and only TLR2 impacts on the immune response of the intact host in vivo. Inhibition of TLR2 may be a novel treatment strategy in melioidosis.


Journal of Immunology | 2005

The MyD88-Dependent, but Not the MyD88-Independent, Pathway of TLR4 Signaling Is Important in Clearing Nontypeable Haemophilus influenzae from the Mouse Lung

Catharina W. Wieland; Sandrine Florquin; Nico A Maris; Kasper Hoebe; Bruce Beutler; Kiyoshi Takeda; Shizuo Akira; Tom van der Poll

TLRs are important for the recognition of conserved motifs expressed by invading bacteria. TLR4 is the signaling receptor for LPS, the major proinflammatory component of the Gram-negative cell wall, whereas CD14 serves as the ligand-binding part of the LPS receptor complex. Triggering of TLR4 results in the activation of two distinct intracellular pathways, one that relies on the common TLR adaptor MyD88 and one that is mediated by Toll/IL-1R domain-containing adaptor-inducing IFN-β (TRIF). Nontypeable Haemophilus influenzae (NTHi) is a common Gram-negative respiratory pathogen that expresses both TLR4 (LPS and lipooligosaccharide) and TLR2 (lipoproteins) ligands. To determine the roles of CD14, TLR4, and TLR2 during NTHi pneumonia, the following studies were performed: 1) Alveolar macrophages from CD14 and TLR4 knockout (KO) mice were virtually unresponsive to NTHi in vitro, whereas TLR2 KO macrophages displayed a reduced NTHi responsiveness. 2) After intranasal infection with NTHi, CD14 and TLR4 KO mice showed an attenuated early inflammatory response in their lungs, which was associated with a strongly reduced clearance of NTHi from the respiratory tract; in contrast, in TLR2 KO mice, lung inflammation was unchanged, and the number of NTHi CFU was only modestly increased at the end of the 10-day observation period. 3) MyD88 KO, but not TRIF mutant mice showed an increased bacterial load in their lungs upon infection with NTHi. These data suggest that the MyD88-dependent pathway of TLR4 is important for an effective innate immune response to respiratory tract infection caused by NTHi.


European Journal of Immunology | 2005

Specific ICAM-3 grabbing nonintegrin-related 1 (SIGNR1) expressed by marginal zone macrophages is essential for defense against pulmonary Streptococcus pneumoniae infection

Estella A. Koppel; Catharina W. Wieland; Venice C. M. van den Berg; Manja Litjens; Sandrine Florquin; Yvette van Kooyk; Tom van der Poll; Teunis B. H. Geijtenbeek

The dendritic cell‐specific ICAM‐3‐grabbing nonintegrin (DC‐SIGN) homolog, SIGN‐related 1 (SIGNR1) is a pathogen receptor expressed by splenic marginal zone and peritoneal macrophages, and is essential for clearance of Streptococcus pneumoniae by phagocytosis after intraperitoneal infection. Here, we identified an important in vivo function for SIGNR1 in S. pneumonia infection induced via its natural entrance route. Upon intranasal infection with S. pneumoniae, SIGNR1‐deficient mice did not clear bacteria from lung and blood, and displayed severely enhanced inflammatory parameters compared to the wild‐type mice. However, SIGNR1 is not expressed by alveolar macrophages, suggesting that another mechanism than a decrease in phagocytosis is responsible for this difference. Natural anti‐phosphorylcholine IgM produced by marginal zone B cells is essential for protection against infection with S. pneumoniae. Strikingly, during infection, SIGNR1‐deficient mice failed to produce a rapid anti‐phosphorylcholine IgM response. Marginal zone macrophages have been suggested to capture antigens for presentation to marginal zone B cells. We demonstrate that marginal zone macrophages from SIGNR1‐deficient mice in contrast to wild‐type mice are not able to capture pneumococci from blood, suggesting that SIGNR1 on marginal zone macrophages captures S. pneumoniae for antigen presentation to and activation of marginal zone B cells, resulting in an anti‐phosphorylcholine IgM response.


Anesthesiology | 2012

Ventilator-induced lung injury is mediated by the NLRP3 inflammasome

Maria T. Kuipers; Hamid Aslami; John R. Janczy; Koenraad F. van der Sluijs; Alexander P. J. Vlaar; Esther K. Wolthuis; Goda Choi; Joris J. T. H. Roelofs; Richard A. Flavell; Fayyaz S. Sutterwala; Paul Bresser; Jaklien C. Leemans; Tom van der Poll; Marcus J. Schultz; Catharina W. Wieland

Background: The innate immune response is important in ventilator-induced lung injury (VILI) but the exact pathways involved are not elucidated. The authors studied the role of the intracellular danger sensor NLRP3 inflammasome. Methods: NLRP3 inflammasome gene expression was analyzed in respiratory epithelial cells and alveolar macrophages obtained from ventilated patients (n = 40). In addition, wild-type and NLRP3 inflammasome deficient mice were randomized to low tidal volume (approximately 7.5 ml/kg) and high tidal volume (approximately 15 ml/kg) ventilation. The presence of uric acid in lung lavage, activation of caspase-1, and NLRP3 inflammasome gene expression in lung tissue were investigated. Moreover, mice were pretreated with interleukin-1 receptor antagonist, glibenclamide, or vehicle before start of mechanical ventilation. VILI endpoints were relative lung weights, total protein in lavage fluid, neutrophil influx, and pulmonary and systemic cytokine and chemokine concentrations. Data represent mean ± SD. Results: Mechanical ventilation up-regulated messenger RNA expression levels of NLRP3 in alveolar macrophages (1.0 ± 0 vs. 1.70 ± 1.65, P less than 0.05). In mice, mechanical ventilation increased both NLRP3 and apoptosis-associated speck-like protein messenger RNA levels, respectively (1.08 ± 0.55 vs. 3.98 ± 2.89; P less than 0.001 and 0.95 ± 0.53 vs. 6.0 ± 3.55; P less than 0.001), activated caspase-1, and increased uric acid levels (6.36 ± 1.85 vs. 41.9 ± 32.0, P less than 0.001). NLRP3 inflammasome deficient mice displayed less VILI due to high tidal volume mechanical ventilation compared with wild-type mice. Furthermore, treatment with interleukin-1 receptor antagonist or glibenclamide reduced VILI. Conclusions: Mechanical ventilation induced a NLRP3 inflammasome dependent pulmonary inflammatory response. NLRP3 inflammasome deficiency partially protected mice from VILI.


PLOS ONE | 2008

MyD88 Dependent Signaling Contributes to Protective Host Defense against Burkholderia pseudomallei

W. Joost Wiersinga; Catharina W. Wieland; Joris J. T. H. Roelofs; Tom van der Poll

Background Toll-like receptors (TLRs) have a central role in the recognition of pathogens and the initiation of the innate immune response. Myeloid differentiation primary-response gene 88 (MyD88) and TIR-domain-containing adaptor protein inducing IFNβ (TRIF) are regarded as the key signaling adaptor proteins for TLRs. Melioidosis, which is endemic in SE-Asia, is a severe infection caused by the gram-negative bacterium Burkholderia pseudomallei. We here aimed to characterize the role of MyD88 and TRIF in host defense against melioidosis. Methodology and Principal Findings First, we found that MyD88, but not TRIF, deficient whole blood leukocytes released less TNFα upon stimulation with B. pseudomallei compared to wild-type (WT) cells. Thereafter we inoculated MyD88 knock-out (KO), TRIF mutant and WT mice intranasally with B. pseudomallei and found that MyD88 KO, but not TRIF mutant mice demonstrated a strongly accelerated lethality, which was accompanied by significantly increased bacterial loads in lungs, liver and blood, and grossly enhanced liver damage compared to WT mice. The decreased bacterial clearance capacity of MyD88 KO mice was accompanied by a markedly reduced early pulmonary neutrophil recruitment and a diminished activation of neutrophils after infection with B. pseudomallei. MyD88 KO leukocytes displayed an unaltered capacity to phagocytose and kill B. pseudomallei in vitro. Conclusions MyD88 dependent signaling, but not TRIF dependent signaling, contributes to a protective host response against B. pseudomallei at least in part by causing early neutrophil recruitment towards the primary site of infection.


Cellular Microbiology | 2007

Inflammation patterns induced by different Burkholderia species in mice

W. Joost Wiersinga; Alex F. de Vos; Regina de Beer; Catharina W. Wieland; Joris J. T. H. Roelofs; Donald E. Woods; Tom van der Poll

Burkholderia pseudomallei, which causes melioidosis, a severe, mainly pulmonary disease endemic in South‐East Asia, is considered to be the most pathogenic of the Burkholderia genus. B. thailandensis, however, is considered avirulent. We determined differences in patterns of inflammation of B. pseudomallei 1026b (clinical virulent isolate), B. pseudomallei AJ1D8 (an in vitro invasion‐deficient mutant generated from strain 1026b by Tn5‐OT182 mutagenesis) and B. thailandensis by intranasally inoculating C57BL/6 mice with each strain. Mice infected with B. thailandensis showed a markedly decreased bacterial outgrowth from lungs, spleen and blood 24 h after inoculation, compared with infection with B. pseudomallei and the invasion mutant AJ1D8. Forty‐eight hours after inoculation, B. thailandensis was no longer detectable. This was consistent with elevated pulmonary cytokine and chemokine concentrations after infection with B. pseudomallei 1026b and AJ1D8, and the absence of these mediators 48 h, but not 24 h, after inoculation with B. thailandensis. Histological examination, however, did show marked pulmonary inflammation in the mice infected with B. thailandensis, corresponding with substantial granulocyte influx and raised myeloperoxidase levels. Survival experiments showed that infection with 1 × 103 cfu B. thailandensis was not lethal, whereas inoculation with 1 × 106 cfu B. thailandensis was equally lethal as 1 × 103 cfu B. pseudomallei 1026b or AJ1D8. These data show that B. pseudomallei AJ1D8 is just as lethal as wild‐type B. pseudomallei in an in vivo mouse model, and B. thailandensis is perhaps more virulent than is often recognized.


Thyroid | 2008

Type 3 Deiodinase Is Highly Expressed in Infiltrating Neutrophilic Granulocytes in Response to Acute Bacterial Infection

Anita Boelen; Jeffrey Boorsma; Joan Kwakkel; Catharina W. Wieland; Rosemarijn Renckens; Theo J. Visser; Eric Fliers; Wilmar M. Wiersinga

BACKGROUND Macrophages and polymorphonuclear cells (PMNs) play an important role in the first line of defense against bacteria by infiltrating the infected organ in order to clear the harmful pathogen. Our earlier studies showed that granulocytes express type 3 deiodinase (D3) when activated during a turpentine-induced abscess. We hypothesized that D3 expression by granulocytes may also occur during bacterial infection. METHODS In order to test this hypothesis, we used the following experimental infection models: peritonitis induced by Escherichia coli and acute pneumonia induced by Streptococcus pneumoniae. RESULTS E. coli-induced peritonitis was characterized by infiltration in the liver by inflammatory cells with abundant immunocytochemical D3 expression while no staining was present in hepatocytes of infected or control mice. Acute pneumonia induced by S. pneumoniae resulted in inflamed lungs characterized by numerous infiltrating granulocytes expressing D3 while no D3 staining was present in lung sections without an infiltrate. Serum thyroid hormones were negatively correlated to bacterial outgrowth in both lung and spleen, and thus to the severity of illness. CONCLUSION Infiltrating granulocytes during acute bacterial infection express D3. Our work supports the hypothesis that D3 plays an important role during chemical and bacterial inflammation. Whether the resulting decreased local bioavailability of thyroid hormones or rather the increased local availability of iodide is an important element of the innate immune response remains to be studied.


Endocrinology | 2009

Impaired bacterial clearance in type 3 deiodinase deficient mice infected with Streptococcus pneumoniae

Anita Boelen; Joan Kwakkel; Catharina W. Wieland; Donald L. St. Germain; Eric Fliers; Arturo Hernandez

The activation of type 3 deiodinase (D3) has been postulated to play a role in the reduction of thyroid hormone levels during illness. Using a mouse model of acute bacterial infection, we have recently demonstrated marked D3 immunostaining in neutrophils infiltrating infected organs. These observations suggest a possible additional role for this enzyme in the innate immune response. To further assess the role of D3 in the response to acute bacterial infection, we used null D3 [D3 knockout (D3KO)] and wild type (WT) mice and infected them with Streptococcus pneumoniae. Marked reductions in serum thyroid hormone levels were observed both in D3KO and WT mice. Infection resulted also in a decrease in liver D1 activity in WT, but not in infected D3KO mice. Upon infection, pulmonary neutrophilic influx (measured by myeloperoxidase levels) and IL-6 and TNF concentrations increased equally in D3KO and WT mice, and histological examination of infected mice showed similar pulmonary inflammation in both strains. However, D3KO animals demonstrated significantly higher bacterial load in blood, lung, and spleen compared with WT mice. We conclude that 1) D3 is not required to generate the systemic manifestations of the nonthyroidal illness syndrome in this model; 2) the lack of D3 does not affect the extent of pulmonary inflammation; and 3) bacterial outgrowth in blood, spleen, and lung of D3KO mice is significantly higher than in WT mice. Our results suggest a protective role for D3 in the defense against acute bacterial infection, probably by reinforcing the microbial killing capacity of neutrophils.

Collaboration


Dive into the Catharina W. Wieland's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge