Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Catherine A. Carmichael is active.

Publication


Featured researches published by Catherine A. Carmichael.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Composition and fate of gas and oil released to the water column during the Deepwater Horizon oil spill

Christopher M. Reddy; J. Samuel Arey; Jeffrey S. Seewald; Sean P. Sylva; Karin L. Lemkau; Robert K. Nelson; Catherine A. Carmichael; Cameron McIntyre; Judith Fenwick; G. Todd Ventura; Benjamin A. S. Van Mooy

Quantitative information regarding the endmember composition of the gas and oil that flowed from the Macondo well during the Deepwater Horizon oil spill is essential for determining the oil flow rate, total oil volume released, and trajectories and fates of hydrocarbon components in the marine environment. Using isobaric gas-tight samplers, we collected discrete samples directly above the Macondo well on June 21, 2010, and analyzed the gas and oil. We found that the fluids flowing from the Macondo well had a gas-to-oil ratio of 1,600 standard cubic feet per petroleum barrel. Based on the measured endmember gas-to-oil ratio and the Federally estimated net liquid oil release of 4.1 million barrels, the total amount of C1-C5 hydrocarbons released to the water column was 1.7 × 1011 g. The endmember gas and oil compositions then enabled us to study the fractionation of petroleum hydrocarbons in discrete water samples collected in June 2010 within a southwest trending hydrocarbon-enriched plume of neutrally buoyant water at a water depth of 1,100 m. The most abundant petroleum hydrocarbons larger than C1-C5 were benzene, toluene, ethylbenzene, and total xylenes at concentrations up to 78 μg L-1. Comparison of the endmember gas and oil composition with the composition of water column samples showed that the plume was preferentially enriched with water-soluble components, indicating that aqueous dissolution played a major role in plume formation, whereas the fates of relatively insoluble petroleum components were initially controlled by other processes.


Environmental Science & Technology | 2012

Oil Weathering after the Deepwater Horizon Disaster Led to the Formation of Oxygenated Residues

Christoph Aeppli; Catherine A. Carmichael; Robert K. Nelson; Karin L. Lemkau; William M. Graham; Molly C. Redmond; David L. Valentine; Christopher M. Reddy

Following the Deepwater Horizon disaster, the effect of weathering on surface slicks, oil-soaked sands, and oil-covered rocks and boulders was studied for 18 months. With time, oxygen content increased in the hydrocarbon residues. Furthermore, a weathering-dependent increase of an operationally defined oxygenated fraction relative to the saturated and aromatic fractions was observed. This oxygenated fraction made up >50% of the mass of weathered samples, had an average carbon oxidation state of -1.0, and an average molecular formula of (C(5)H(7)O)(n). These oxygenated hydrocarbon residues were devoid of natural radiocarbon, confirming a fossil source and excluding contributions from recent photosynthate. The incorporation of oxygen into the oils hydrocarbons, which we refer to as oxyhydrocarbons, was confirmed from the detection of hydroxyl and carbonyl functional groups and the identification of long chain (C(10)-C(32)) carboxylic acids as well as alcohols. On the basis of the diagnostic ratios of alkanes and polycyclic aromatic hydrocarbons, and the context within which these samples were collected, we hypothesize that biodegradation and photooxidation share responsibility for the accumulation of oxygen in the oil residues. These results reveal that molecular-level transformations of petroleum hydrocarbons lead to increasing amounts of, apparently recalcitrant, oxyhydrocarbons that dominate the solvent-extractable material from oiled samples.


Environmental Science & Technology | 2014

Recalcitrance and degradation of petroleum biomarkers upon abiotic and biotic natural weathering of Deepwater Horizon oil.

Christoph Aeppli; Robert K. Nelson; Jagoš R. Radović; Catherine A. Carmichael; David L. Valentine; Christopher M. Reddy

Petroleum biomarkers such as hopanoids, steranes, and triaromatic steroids (TAS) are commonly used to investigate the source and fate of petroleum hydrocarbons in the environment based on the premise that these compounds are resistant to biotic and abiotic degradation. To test the validity of this premise in the context of the Deepwater Horizon disaster, we investigated changes to these biomarkers as induced by natural weathering of crude oil discharged from the Macondo Well (MW). For surface slicks collected from May to June in 2010, and other oiled samples collected on beaches in the northern Gulf of Mexico from July 2010 until August 2012, hopanoids with up to 31 carbons as well as steranes and diasteranes were not systematically affected by weathering processes. In contrast, TAS and C32- to C35-homohopanes were depleted in all samples relative to 17α(H),21β(H)-hopane (C30-hopane). Compared to MW oil, C35-homohopanes and TAS were depleted by 18 ± 10% and 36 ± 20%, respectively, in surface slicks collected from May to June 2010, and by 37 ± 9% and 67 ± 10%, respectively, in samples collected along beaches from April 2011 through August 2012. Based on patterns of relative losses of individual compounds, we hypothesize biodegradation and photooxidation as main degradation processes for homohopanes and TAS, respectively. This study highlights that (i) TAS and homohopanes can be degraded within several years following an oil spill, (ii) the use of homohopanes and TAS for oil spill forensics must account for degradation, and (iii) these compounds provide a window to parse biodegradation and photooxidation during advanced stages of oil weathering.


Environmental Research Letters | 2011

Rapid microbial respiration of oil from the Deepwater Horizon spill in offshore surface waters of the Gulf of Mexico

Bethanie R. Edwards; Christopher M. Reddy; Catherine A. Carmichael; Krista Longnecker; Benjamin A. S. Van Mooy

The Deepwater Horizon oil spill was one of the largest oil spills in history, and the fate of this oil within the Gulf of Mexico ecosystem remains to be fully understood. The goal of this study—conducted in mid-June of 2010, approximately two months after the oil spill began—was to understand the key role that microbes would play in the degradation of the oil in the offshore oligotrophic surface waters near the Deepwater Horizon site. As the utilization of organic carbon by bacteria in the surface waters of the Gulf had been previously shown to be phosphorus limited, we hypothesized that bacteria would be unable to rapidly utilize the oil released from the Macondo well. Although phosphate was scarce throughout the sampling region and microbes exhibited enzymatic signs of phosphate stress within the oil slick, microbial respiration within the slick was enhanced by approximately a factor of five. An incubation experiment to determine hydrocarbon degradation rates confirmed that a large fraction of this enhanced respiration was supported by hydrocarbon degradation. Extrapolating our observations to the entire area of the slick suggests that microbes had the potential to degrade a large fraction of the oil as it arrived at the surface from the well. These observations decidedly refuted our hypothesis. However, a concomitant increase in microbial abundance or biomass was not observed in the slick, suggesting that microbial growth was nutrient limited; incubations amended with nutrients showed rapid increases in cell number and biomass, which supported this conclusion. Our study shows that the dynamic microbial community of the Gulf of Mexico supported remarkable rates of oil respiration, despite a dearth of dissolved nutrients.


Environmental Science & Technology | 2014

Resolving Biodegradation Patterns of Persistent Saturated Hydrocarbons in Weathered Oil Samples from the Deepwater Horizon Disaster

Jonas Gros; Christopher M. Reddy; Christoph Aeppli; Robert K. Nelson; Catherine A. Carmichael; J. Samuel Arey

Biodegradation plays a major role in the natural attenuation of oil spills. However, limited information is available about biodegradation of different saturated hydrocarbon classes in surface environments, despite that oils are composed mostly of saturates, due to the limited ability of conventional gas chromatography (GC) to resolve this compound group. We studied eight weathered oil samples collected from four Gulf of Mexico beaches 12-19 months after the Deepwater Horizon disaster. Using comprehensive two-dimensional gas chromatography (GC × GC), we successfully separated, identified, and quantified several distinct saturates classes in these samples. We find that saturated hydrocarbons eluting after n-C22 dominate the GC-amenable fraction of these weathered samples. This compound group represented 8-10%, or 38-68 thousand metric tons, of the oil originally released from Macondo well. Saturates in the n-C22 to n-C29 elution range were found to be partly biodegraded, but to different relative extents, with ease of biodegradation decreasing in the following order: n-alkanes > methylalkanes and alkylcyclopentanes+alkylcyclohexanes > cyclic and acyclic isoprenoids. We developed a new quantitative index designed to characterize biodegradation of >n-C22 saturates. These results shed new light onto the environmental fate of these persistent, hydrophobic, and mostly overlooked compounds in the unresolved complex mixtures (UCM) of weathered oils.


Marine Pollution Bulletin | 2013

Oxygenated weathering products of Deepwater Horizon oil come from surprising precursors

Gregory J. Hall; Glenn S. Frysinger; Christoph Aeppli; Catherine A. Carmichael; Jonas Gros; Karin L. Lemkau; Robert K. Nelson; Christopher M. Reddy

Following the release of crude oil from the Macondo well in 2010, a wide range of weathering processes acted on the spilled oil. A recent study revealed that samples from this spill were oxidized into oxygenated hydrocarbons (OxHC) comprising more than 50% of the extracted hydrocarbons. The precursors of these compounds were not identified despite using a wide range of analytical tools, including gas chromatography (GC). To search for these precursors, over 40 samples were analyzed by comprehensive two-dimensional gas chromatography (GC×GC), one of the largest studies of its kind to date. Partial least squares regression was employed to elucidate the GC×GC peaks that could be the precursors of OxHC in our samples. We found that the formation of OxHC correlated with the disappearance of saturated hydrocarbons, including alkylcyclopentanes, alkyl cyclohexanes, alkylated bicyclic saturated compounds, tricyclic terpanpoids, and alkylbenzenes. These results indicate a previously under-reported chemodynamic process in oil spill weathering.


Environmental Research Letters | 2012

Floating oil-covered debris from Deepwater Horizon: identification and application

Catherine A. Carmichael; J. Samuel Arey; William M. Graham; Laura J. Linn; Karin L. Lemkau; Robert K. Nelson; Christopher M. Reddy

The discovery of oiled and non-oiled honeycomb material in the Gulf of Mexico surface waters and along coastal beaches shortly after the explosion of Deepwater Horizon sparked debate about its origin and the oil covering it. We show that the unknown pieces of oiled and non-oiled honeycomb material collected in the Gulf of Mexico were pieces of the riser pipe buoyancy module of Deepwater Horizon. Biomarker ratios confirmed that the oil had originated from the Macondo oil well and had undergone significant weathering. Using the National Oceanic and Atmospheric Administrations records of the oil spill trajectory at the sea surface, we show that the honeycomb material preceded the front edge of the uncertainty of the oil slick trajectory by several kilometers. We conclude that the observation of debris fields deriving from damaged marine materials may be incorporated into emergency response efforts and forecasting of coastal impacts during future offshore oil spills, and ground truthing predicative models.


International Oil Spill Conference Proceedings | 2014

BIOTIC AND ABIOTIC OIL DEGRADATION AFTER THE DEEPWATER HORIZON DISASTER LEADS TO FORMATION OF RECALCITRANT OXYGENATED HYDROCARBONS: NEW INSIGHTS USING GC×GC

Christoph Aeppli; Robert K. Nelson; Catherine A. Carmichael; David L. Valentine; Christopher M. Reddy

ABSTRACT We found that biodegradation, as well as photooxidation, of Macondo well (MW) oil led to rapid formation of recalcitrant oxygenated hydrocarbons (OxHC) after the Deepwater Horizon disaster. These compounds, which appear to be an abundant product of natural oil degradation, are poorly characterized in terms of molecular composition. We used various bulk and molecular techniques to characterize the OxHC fraction of weathered MW oil. Furthermore, we compared the characteristic disappearance of various petroleum hydrocarbons to gain insights into on-going biotic, as well as abiotic, oil oxygenation processes, that ultimately determine the fate of petroleum hydrocarbons in the environment. We found that biodegradation as well as photooxidation was responsible for the observed degradation of alkanes and PAHs in MW oil. Furthermore, we identified labile as well as recalcitrant biomarker compounds; these labile biomarker compounds should be used with caution for oil fingerprinting.


International Oil Spill Conference Proceedings | 2014

High Resolution Forensic Analysis Of Surface Sheens Helps Pinpoint Source Of Oil Leakage From The Deepwater Horizon

Robert K. Nelson; Christoph Aeppli; Catherine A. Carmichael; Christopher M. Reddy

Alkenes commonly found in synthetic drilling-fluids were used to identify sources of oil sheens that were first observed in September 2012 close to the Deepwater Horizon (DWH) disaster site more th...


Marine Pollution Bulletin | 2007

Biodegradation and environmental behavior of biodiesel mixtures in the sea: An initial study.

Jared A. DeMello; Catherine A. Carmichael; Emily E. Peacock; Robert K. Nelson; J. Samuel Arey; Christopher M. Reddy

Collaboration


Dive into the Catherine A. Carmichael's collaboration.

Top Co-Authors

Avatar

Christopher M. Reddy

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar

Robert K. Nelson

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar

Christoph Aeppli

Bigelow Laboratory For Ocean Sciences

View shared research outputs
Top Co-Authors

Avatar

J. Samuel Arey

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Karin L. Lemkau

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar

Benjamin A. S. Van Mooy

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregory W. O’Neil

Western Washington University

View shared research outputs
Top Co-Authors

Avatar

Emily E. Peacock

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar

Gerhard Knothe

National Center for Agricultural Utilization Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge