Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Catherine A. Collins is active.

Publication


Featured researches published by Catherine A. Collins.


Neuron | 2006

Highwire Restrains Synaptic Growth by Attenuating a MAP Kinase Signal

Catherine A. Collins; Yogesh P. Wairkar; Sylvia L. Johnson; Aaron DiAntonio

Highwire is an extremely large, evolutionarily conserved E3 ubiquitin ligase that negatively regulates synaptic growth at the Drosophila NMJ. Highwire has been proposed to restrain synaptic growth by downregulating a synaptogenic signal. Here we identify such a downstream signaling pathway. A screen for suppressors of the highwire synaptic overgrowth phenotype yielded mutations in wallenda, a MAP kinase kinase kinase (MAPKKK) homologous to vertebrate DLK and LZK. wallenda is both necessary for highwire synaptic overgrowth and sufficient to promote synaptic overgrowth, and synaptic levels of Wallenda protein are controlled by Highwire and ubiquitin hydrolases. highwire synaptic overgrowth requires the MAP kinase JNK and the transcription factor Fos. These results suggest that Highwire controls structural plasticity of the synapse by regulating gene expression through a MAP kinase signaling pathway. In addition to controlling synaptic growth, Highwire promotes synaptic function through a separate pathway that does not require wallenda.


The Journal of Neuroscience | 2004

Increased Expression of the Drosophila Vesicular Glutamate Transporter Leads to Excess Glutamate Release and a Compensatory Decrease in Quantal Content

Richard W. Daniels; Catherine A. Collins; Maria V. Gelfand; Jaime Dant; Elizabeth S. Brooks; David E. Krantz; Aaron DiAntonio

Quantal size is a fundamental parameter controlling the strength of synaptic transmission. The transmitter content of synaptic vesicles is one mechanism that can affect the physiological response to the release of a single vesicle. At glutamatergic synapses, vesicular glutamate transporters (VGLUTs) are responsible for filling synaptic vesicles with glutamate. To investigate how VGLUT expression can regulate synaptic strength in vivo, we have identified the Drosophila vesicular glutamate transporter, which we name DVGLUT. DVGLUT mRNA is expressed in glutamatergic motoneurons and a large number of interneurons in the Drosophila CNS. DVGLUT protein resides on synaptic vesicles and localizes to the presynaptic terminals of all known glutamatergic neuromuscular junctions as well as to synapses throughout the CNS neuropil. Increasing the expression of DVGLUT in motoneurons leads to an increase in quantal size that is accompanied by an increase in synaptic vesicle volume. At synapses confronted with increased glutamate release from each vesicle, there is a compensatory decrease in the number of synaptic vesicles released that maintains normal levels of synaptic excitation. These results demonstrate that (1) expression of DVGLUT determines the size and glutamate content of synaptic vesicles and (2) homeostatic mechanisms exist to attenuate the excitatory effects of excess glutamate release.


Current Opinion in Neurobiology | 2007

Synaptic development: insights from Drosophila

Catherine A. Collins; Aaron DiAntonio

In Drosophila, the larval neuromuscular junction is particularly tractable for studying how synapses develop and function. In contrast to vertebrate central synapses, each presynaptic motor neuron and postsynaptic muscle cell is unique and identifiable, and the wiring circuit is invariant. Thus, the full power of Drosophila genetics can be brought to bear on a single, reproducibly identifiable, synaptic terminal. Each individual neuromuscular junction encompasses hundreds of synaptic neurotransmitter release sites housed in a chain of synaptic boutons. Recent advances have increased our understanding of the mechanisms that shape the development of both individual synapses--that is, the transmitter release sites including active zones and their apposed glutamate receptor clusters--and the whole synaptic terminal that connects a pre- and post-synaptic cell.


Journal of Cell Biology | 2010

Protein turnover of the Wallenda/DLK kinase regulates a retrograde response to axonal injury

Xin Xiong; Xin Wang; Ronny Ewanek; Pavan Bhat; Aaron DiAntonio; Catherine A. Collins

The MAPK kinase kinase Wallenda is regulated by the Highwire E3 ubiquitin ligase and initiates injury signaling in axons.


Current Biology | 2007

Control of a Kinesin-Cargo Linkage Mechanism by JNK Pathway Kinases

Dai Horiuchi; Catherine A. Collins; Pavan Bhat; Rosemarie V. Barkus; Aaron DiAntonio; William M. Saxton

Long-distance organelle transport toward axon terminals, critical for neuron development and function, is driven along microtubules by kinesins [1, 2]. The biophysics of force production by various kinesins is known in detail. However, the mechanisms of in vivo transport processes are poorly understood because little is known about how motor-cargo linkages are controlled. A c-Jun N-terminal kinase (JNK)-interacting protein (JIP1) has been identified previously as a linker between kinesin-1 and certain vesicle membrane proteins, such as Alzheimers APP protein and a reelin receptor ApoER2 [3, 4]. JIPs are also known to be scaffolding proteins for JNK pathway kinases [5, 6]. Here, we report evidence that a Drosophila ubiquitin-specific hydrolase and a JNK signaling pathway that it modulates can regulate a JIP1-kinesin linkage. The JNK pathway includes a MAPKKK (Wallenda/DLK), a MAPKK (Hemipterous/MKK7), and the Drosophila JNK homolog Basket. Genetic tests indicate that those kinases are required for normal axonal transport. Biochemical tests show that activation of Wallenda (DLK) and Hemipterous (MKK7) disrupts binding between kinesin-1 and APLIP1, which is the Drosophila JIP1 homolog. This suggests a control mechanism in which an activated JNK pathway influences axonal transport by functioning as a kinesin-cargo dissociation factor.


Neuron | 2006

A Single Vesicular Glutamate Transporter Is Sufficient to Fill a Synaptic Vesicle

Richard W. Daniels; Catherine A. Collins; Kaiyun Chen; Maria V. Gelfand; David E. Featherstone; Aaron DiAntonio

Quantal size is the postsynaptic response to the release of a single synaptic vesicle and is determined in part by the amount of transmitter within that vesicle. At glutamatergic synapses, the vesicular glutamate transporter (VGLUT) fills vesicles with glutamate. While elevated VGLUT expression increases quantal size, the minimum number of transporters required to fill a vesicle is unknown. In Drosophila DVGLUT mutants, reduced transporter levels lead to a dose-dependent reduction in the frequency of spontaneous quantal release with no change in quantal size. Quantal frequency is not limited by vesicle number or impaired exocytosis. This suggests that a single functional unit of transporter is both necessary and sufficient to fill a vesicle to completion and that vesicles without DVGLUT are empty. Consistent with the presence of empty vesicles, at dvglut mutant synapses synaptic vesicles are smaller, suggesting that vesicle filling and/or transporter level is an important determinant of vesicle size.


The Journal of Comparative Neurology | 2008

Visualizing glutamatergic cell bodies and synapses in Drosophila larval and adult CNS

Richard W. Daniels; Maria V. Gelfand; Catherine A. Collins; Aaron DiAntonio

Glutamate is the major excitatory neurotransmitter in the vertebrate central nervous system (CNS) and at Drosophila neuromuscular junctions (NMJs). Although glutamate is also used as a transmitter in the Drosophila CNS, there has been no systematic description of the central glutamatergic signaling system in the fly. With the recent cloning of the Drosophila vesicular glutamate transporter (DVGLUT), it is now possible to mark many, if not all, central glutamatergic neurons and synapses. Here we present the pattern of glutamatergic synapses and cell bodies in the late larval CNS and in the adult fly brain by using an anti‐DVGLUT antibody. We also introduce two new tools for studying the Drosophila glutamatergic system: a dvglut promoter fragment fused to Gal4 whose expression labels glutamatergic neurons and a green fluorescent protein (GFP)‐tagged DVGLUT transgene that localizes to synapses. In the larval CNS, we find synaptic DVGLUT immunoreactivity prominent in all brain lobe neuropil compartments except for the mushroom body. Likewise in the adult CNS, glutamatergic synapses are abundant throughout all major brain structures except the mushroom body. We also find that the larval ventral nerve cord neuropil is rich in glutamatergic synapses, which are primarily located near the dorsal surface of the neuropil, segregated from the ventrally positioned cholinergic processes. This description of the glutamatergic system in Drosophila highlights the prevalence of glutamatergic neurons in the CNS and presents tools for future study and manipulation of glutamatergic transmission. J. Comp. Neurol. 508:131–152, 2008.


Nature Chemical Biology | 2013

Activation of Hsp70 reduces neurotoxicity by promoting polyglutamine protein degradation

Adrienne M. Wang; Yoshinari Miyata; Susan Klinedinst; Hwei Ming Peng; Jason P. Chua; Tomoko Komiyama; Xiaokai Li; Yoshihiro Morishima; Diane E. Merry; William B. Pratt; Yoichi Osawa; Catherine A. Collins; Jason E. Gestwicki; Andrew P. Lieberman

We sought novel strategies to reduce levels of the polyglutamine androgen receptor (polyQ AR) and achieve therapeutic benefits in models of spinobulbar muscular atrophy (SBMA), a protein aggregation neurodegenerative disorder. Proteostasis of the polyQ AR is controlled by the Hsp90/Hsp70-based chaperone machinery, but mechanisms regulating the protein’s turnover are incompletely understood. We demonstrate that overexpression of Hip, a co-chaperone that enhances binding of Hsp70 to its substrates, promotes client protein ubiquitination and polyQ AR clearance. Furthermore, we identify a small molecule that acts similarly to Hip by allosterically promoting Hsp70 binding to unfolded substrates. Like Hip, this synthetic co-chaperone enhances client protein ubiquitination and polyQ AR degradation. Both genetic and pharmacologic approaches targeting Hsp70 alleviate toxicity in a Drosophila model of SBMA. These findings highlight the therapeutic potential of allosteric regulators of Hsp70, and provide new insights into the role of the chaperone machinery in protein quality control.


PLOS Biology | 2012

The Highwire ubiquitin ligase promotes axonal degeneration by tuning levels of Nmnat protein.

Xin Xiong; Yan Hao; Kan Sun; Jiaxing Li; Xia Li; Bibhudatta Mishra; Pushpanjali Soppina; Chunlai Wu; Richard I. Hume; Catherine A. Collins

Highwire, a conserved axonal E3 ubiquitin ligase, regulates the initiation of axonal degeneration after injury in Drosophila by regulating the levels of the NAD+ biosynthetic enzyme, Nmnat, and the Wnd kinase.


The Journal of Neuroscience | 2005

Highwire Function at the Drosophila Neuromuscular Junction: Spatial, Structural, and Temporal Requirements

Chunlai Wu; Yogesh P. Wairkar; Catherine A. Collins; Aaron DiAntonio

Highwire is a huge, evolutionarily conserved protein that is required to restrain synaptic growth and promote synaptic transmission at the Drosophila neuromuscular junction. Current models of highwire function suggest that it may act as a ubiquitin ligase to regulate synaptic development. However, it is not known in which cells highwire functions, whether its putative ligase domain is required for function, or whether highwire regulates the synapse during development or alternatively sets cell fate in the embryo. We performed a series of transgenic rescue experiments to test the spatial, structural, and temporal requirements for highwire function. We find that presynaptic activity of highwire is both necessary and sufficient to regulate both synapse morphology and physiology. The Highwire RING domain, which is postulated to function as an E3 ubiquitin ligase, is required for highwire function. In addition, highwire acts throughout larval development to regulate synaptic morphology and function. Finally, we show that the morphological and physiological phenotypes of highwire mutants have different dosage and temporal requirements for highwire, demonstrating that highwire may independently regulate the molecular pathways controlling synaptic growth and function.

Collaboration


Dive into the Catherine A. Collins's collaboration.

Top Co-Authors

Avatar

Aaron DiAntonio

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xin Xiong

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Jiaxing Li

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xin Wang

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Yan Hao

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Maria V. Gelfand

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard W. Daniels

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge