Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Catherine A. Peters is active.

Publication


Featured researches published by Catherine A. Peters.


Biotechnology and Bioengineering | 1999

Multisubstrate biodegradation kinetics of naphthalene, phenanthrene, and pyrene mixtures.

Saumyen Guha; Catherine A. Peters

Biodegradation kinetics of naphthalene, phenanthrene and pyrene were studied in sole-substrate systems, and in binary and ternary mixtures to examine substrate interactions. The experiments were conducted in aerobic batch aqueous systems inoculated with a mixed culture that had been isolated from soils contaminated with polycyclic aromatic hydrocarbons (PAHs). Monod kinetic parameters and yield coefficients for the individual compounds were estimated from substrate depletion and CO(2) evolution rate data in sole-substrate experiments. In all three binary mixture experiments, biodegradation kinetics were comparable to the sole-substrate kinetics. In the ternary mixture, biodegradation of naphthalene was inhibited and the biodegradation rates of phenanthrene and pyrene were enhanced. A multisubstrate form of the Monod kinetic model was found to adequately predict substrate interactions in the binary and ternary mixtures using only the parameters derived from sole-substrate experiments. Numerical simulations of biomass growth kinetics explain the observed range of behaviors in PAH mixtures. In general, the biodegradation rates of the more degradable and abundant compounds are reduced due to competitive inhibition, but enhanced biodegradation of the more recalcitrant PAHs occurs due to simultaneous biomass growth on multiple substrates. In PAH-contaminated environments, substrate interactions may be very large due to additive effects from the large number of compounds present.


Biotechnology and Bioengineering | 2000

Statistical Analysis of Nonlinear Parameter Estimation for Monod Biodegradation Kinetics Using Bivariate Data

Christopher D. Knightes; Catherine A. Peters

A nonlinear regression technique for estimating the Monod parameters describing biodegradation kinetics is presented and analyzed. Two model data sets were taken from a study of aerobic biodegradation of the polycyclic aromatic hydrocarbons (PAHs), naphthalene and 2-methylnaphthalene, as the growth-limiting substrates, where substrate and biomass concentrations were measured with time. For each PAH, the parameters estimated were: q(max), the maximum substrate utilization rate per unit biomass; K(S), the half-saturation coefficient; and Y, the stoichiometric yield coefficient. Estimating parameters when measurements have been made for two variables with different error structures requires a technique more rigorous than least squares regression. An optimization function is derived from the maximumlikelihood equation assuming an unknown, nondiagonal covariance matrix for the measured variables. Because the derivation is based on an assumption of normally distributed errors in the observations, the error structures of the regression variables were examined. Through residual analysis, the errors in the substrate concentration data were found to be distributed log-normally, demonstrating a need for log transformation of this variable. The covariance between ln C and X was found to be small but significantly nonzero at the 67% confidence level for NPH and at the 94% confidence level for 2MN. The nonlinear parameter estimation yielded unique values for q(max), K(S), and Y for naphthalene. Thus, despite the low concentrations of this sparingly soluble compound, the data contained sufficient information for parameter estimation. For 2-methylnaphthalene, the values of q(max) and K(S) could not be estimated uniquely; however, q(max)/K(S) was estimated. To assess the value of including the relatively imprecise biomass concentration data, the results from the bivariate method were compared with a univariate method using only the substrate concentration data. The results demonstrated that the bivariate data yielded a better confidence in the estimates and provided additional information about the model fit and model adequacy. The combination of the value of the bivariate data set and their nonzero covariance justifies the need for maximum likelihood estimation over the simpler nonlinear least squares regression.


Environmental Science & Technology | 2010

Dissolution potential of SO2 Co-injected with CO2 in geologic sequestration.

Lauren E. Crandell; Brian R. Ellis; Catherine A. Peters

Sulfur dioxide is a possible co-injectant with carbon dioxide in the context of geologic sequestration. Because of the potential of SO2 to acidify formation brines, the extent of SO2 dissolution from the CO2 phase will determine the viability of co-injection. Pressure-, temperature-, and salinity-adjusted values of the SO2 Henrys Law constant and fugacity coefficient were determined. They are predicted to decrease with depth, such that the solubility of SO2 is a factor of 0.04 smaller than would be predicted without these adjustments. To explore the potential effects of transport limitations, a nonsteady-state model of SO2 diffusion through a stationary cone-shaped plume of supercritical CO2 was developed. This model represents an end-member scenario of diffusion-controlled dissolution of SO2, to contrast with models of complete phase equilibrium. Simulations for conditions corresponding to storage depths of 0.8-2.4 km revealed that after 1000 years, 65-75% of the SO2 remains in the CO2 phase. This slow release of SO2 would largely mitigate its impact on brine pH. Furthermore, small amounts of SO2 are predicted to have a negligible effect on the critical point of CO2 but will increase phase density by as much as 12% for mixtures containing 5% SO2.


American Journal of Science | 2007

APPLICABILITY OF AVERAGED CONCENTRATIONS IN DETERMINING GEOCHEMICAL REACTION RATES IN HETEROGENEOUS POROUS MEDIA

Li Li; Catherine A. Peters; Michael A. Celia

This work examines the applicability of averaged concentrations, a mathematical analog of field-measured solute concentrations averaged over a large number of pores, in determining mineral reaction rates in heterogeneous porous media. Pore-scale network models were used to represent sandstones with anorthite and kaolinite as reactive minerals that are heterogeneously distributed in space. Reaction rates calculated from averaged concentrations were compared to true reaction rates that take into account variabilities in individual pore properties. Simulations were run under the highly acidic conditions relevant to geological CO2 sequestration in deep brine formations under various mineralogical and flow conditions. Results show that, under conditions where incomplete mixing arises, the averaged concentrations and analogously the field-measured concentrations, do not accurately reflect reaction progress. Over the length scale of several millimeters, the anorthite dissolution rates can be overestimated by a factor of three. For kaolinite, due to its highly nonlinear reaction rate law, even the reaction direction may be incorrectly determined, with precipitation predicted as dissolution. The extent of errors introduced depends on the extent of incomplete mixing. Conditions that homogenize the concentration fields, such as small reactive mineral clusters, abundant reactive minerals, and very fast or very slow flow rates, minimize errors introduced from averaging. These results indicate that the averaging scheme may partly contribute to the often-cited laboratory-field rate discrepancy and have important implications for the interpretation of concentration data obtained from field investigation.


Environmental Engineering Science | 2003

Aqueous phase biodegradation kinetics of 10 PAH compounds

Christopher D. Knightes; Catherine A. Peters

Biodegradation kinetics were individually studied for 10 polycyclic aromatic hydrocarbons (PAHs): naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, 2-ethylnaphthalene, acenaphthene, fluorene, ...


Environmental Science & Technology | 2015

Alterations of Fractures in Carbonate Rocks by CO2-Acidified Brines

Hang Deng; Jeffrey P. Fitts; Dustin Crandall; Dustin L. McIntyre; Catherine A. Peters

Fractures in geological formations may enable migration of environmentally relevant fluids, as in leakage of CO2 through caprocks in geologic carbon sequestration. We investigated geochemically induced alterations of fracture geometry in Indiana Limestone specimens. Experiments were the first of their kind, with periodic high-resolution imaging using X-ray computed tomography (xCT) scanning while maintaining high pore pressure (100 bar). We studied two CO2-acidified brines having the same pH (3.3) and comparable thermodynamic disequilibrium but different equilibrated pressures of CO2 (PCO2 values of 12 and 77 bar). High-PCO2 brine has a faster calcite dissolution kinetic rate because of the accelerating effect of carbonic acid. Contrary to expectations, dissolution extents were comparable in the two experiments. However, progressive xCT images revealed extensive channelization for high PCO2, explained by strong positive feedback between ongoing flow and reaction. The pronounced channel increasingly directed flow to a small region of the fracture, which explains why the overall dissolution was lower than expected. Despite this, flow simulations revealed large increases in permeability in the high-PCO2 experiment. This study shows that the permeability evolution of dissolving fractures will be larger for faster-reacting fluids. The overall mechanism is not because more rock dissolves, as would be commonly assumed, but because of accelerated fracture channelization.


Chemosphere | 2008

Changes in microbiological metabolism under chemical stress

Sujata Ray; Catherine A. Peters

Chemical stress may alter microbiological metabolism and this, in turn, may affect the natural and engineered systems where these organisms function. The impact of chemical stress on microbiological metabolism was investigated using model chemicals 2,4-dinitrophenol (DNP), pentachlorophenol (PCP), and N-ethylmaleimide (NEM). Biological activity of Pseudomonas aeruginosa was measured in batch systems, with and without stressors at sub-lethal concentrations. Stressor DNP, between 49 and 140 mg l(-1), and PCP, at 15 and 38 mg l(-1), caused decreases in biomass growth yields, but did not inhibit substrate utilization rates. These effects increased with stressor concentrations, showing as much as a 10% yield reduction at the highest DNP concentration. This suggests that a portion of carbon and energy resources are diverted from growth and used in stress management and protection. Stressor DNP, between 300 and 700 mg l(-1), and PCP at 85 mg l(-1) caused decreases in growth yields and substrate utilization rates. This suggests an inhibition of both anabolism and catabolism. Stressor NEM was the most potent, inhibiting biological activity at concentrations as low as 2.7 mg l(-1). These findings will ultimately be useful in better monitoring and management of biological treatment operations and contaminated natural systems.


Environmental Toxicology and Chemistry | 2006

Multisubstrate biodegradation kinetics for binary and complex mixtures of polycyclic aromatic hydrocarbons

Christopher D. Knightes; Catherine A. Peters

Biodegradation kinetics were studied for binary and complex mixtures of nine polycyclic aromatic hydrocarbons (PAHs): Naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, 2-ethylnaphthalene, phenanthrene, anthracene, pyrene, fluorene, and fluoranthene. Discrepancies between the observed biodegradation rates and those predicted by a sole-substrate model indicate that significant substrate interactions occurred in both the binary and complex-mixture experiments. For all compounds except naphthalene, biodegradation was enhanced. The observations were compared to predictions from two multisubstrate biodegradation kinetic models: One that accounts for competitive inhibition, and one that does not. Both models are fully predictive in that parameters had been determined from an independent set of sole-substrate experiments. In the binary experiments, the major multisubstrate effect was biomass enhancement as a result of growth on naphthalene. Substrate interactions were orders of magnitude larger for most compounds in the complex mixtures, but significant competitive inhibition effects counteracted some of the biomass enhancement effect. The present study has demonstrated that the sole-substrate model is inadequate to describe multisubstrate biodegradation kinetics for a broad range of PAH mixtures. Whereas the multisubstrate model without inhibition did an adequate job of predicting the observed effects in some cases, we advocate the use of the multisubstrate model with inhibition for similar modeling efforts in light of the evidence that the model was correct more often than not. Theory supports its use because of the common enzyme pathways for biodegradation of PAHs.


Transport in Porous Media | 2000

Multicomponent NAPL Solidification Thermodynamics

Catherine A. Peters; Kristine H. Wammer; Christopher D. Knightes

Nonaqueous phase liquid (NAPL) contaminants that are chemical mixtures often contain compounds that are solids in their pure states. In the environment, weathering processes cause shifts in multicomponent NAPL composition, thereby enriching the NAPL in the less soluble compounds which may result in their eventual solidification. In this paper, we review the thermodynamic theory governing solid–liquid phase equilibria for the multicomponent NAPLs, and we present experimental observations of such phase equilibria for binary, ternary, and quaternary mixtures of polycyclic aromatic hydrocarbons (PAHs). If the NAPL phase behaves as an ideal solution and if the solid precipitate is pure, then a compounds mole fraction solubility limit in the NAPL phase equals its solid–liquid reference fugacity ratio. This value is a constant at the temperature of the system. If the NAPL phase is a non‐ideal solvent or if the solid is a solid solution, prediction of NAPL solidification in the environment is considerably more difficult. Experimental results indicate that for compounds such as naphthalene and acenaphthene, the solid–liquid reference fugacity ratio serves as a good indicator of the solubility limits in the NAPL phase. For phenanthrene, the solids that form when this compound exceeds its solubility limit are solid solutions that consistently include large portions of 2‐methylnaphthalene. These results suggest that the independent behavior implied by ideal solubility theory may not be an accurate descriptor of NAPL solidification phenomena for all PAH‐containing NAPLs.


Journal of Contaminant Hydrology | 2012

Changes in the pore network structure of Hanford sediment after reaction with caustic tank wastes.

L.E. Crandell; Catherine A. Peters; Wooyong Um; K.W. Jones; W.B. Lindquist

At the former nuclear weapon production site in Hanford, WA, caustic radioactive tank waste leaks into subsurface sediments and causes dissolution of quartz and aluminosilicate minerals, and precipitation of sodalite and cancrinite. This work examines changes in pore structure due to these reactions in a previously-conducted column experiment. The column was sectioned and 2D images of the pore space were generated using backscattered electron microscopy and energy dispersive X-ray spectroscopy. A pre-precipitation scenario was created by digitally removing mineral matter identified as secondary precipitates. Porosity, determined by segmenting the images to distinguish pore space from mineral matter, was up to 0.11 less after reaction. Erosion-dilation analysis was used to compute pore and throat size distributions. Images with precipitation had more small and fewer large pores. Precipitation decreased throat sizes and the abundance of large throats. These findings agree with previous findings based on 3D X-ray CMT imaging, observing decreased porosity, clogging of small throats, and little change in large throats. However, 2D imaging found an increase in small pores, mainly in intragranular regions or below the resolution of the 3D images. Also, an increase in large pores observed via 3D imaging was not observed in the 2D analysis. Changes in flow conducting throats that are the key permeability-controlling features were observed in both methods.

Collaboration


Dive into the Catherine A. Peters's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher D. Knightes

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Li Li

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Curtis M. Oldenburg

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge